An Improved Radiative Transfer Algorithm
 for Optically Thin Media

Brian McNoldy, Matthew Hopsecger, Philip Gabriel, and Thomas Vonder Haar
 Department of Atmospheric Science
 Colorado State University

FORMULATION

For the Eigenmatrix and Series Approaches, a basic form of the Interaction Principle will be used, namely.

$$
I_{\text {OUT }}=f\left(I_{I N}\right) \text { such that } I(\tau)=e^{A \tau} I(0)
$$

In other words, the radiation leaving a layer of atmosphere can be expressed as a function of the radiation entering the atmosphere, given that the radiation incident at the bottom of the layer is a "propagation function" of the radiation incident at the top of the layer.
Eigenmatrix Approach:
Let $e^{A \tau}=e^{\left(X k X^{-1}\right) \tau}$, since for any vector A, eigenvector X, and eigenvalue(s) $k, A X=X k \Rightarrow A=X k X^{-1}$. Then $e^{A \tau}=e^{\left(X k X^{-1}\right) \tau}$

$R=\left[e(-) e^{k \tau} f(+)+e(+) e^{-k \tau} f(-)\right]\left[e(+) e^{k \tau} f(+)+e(-) e^{-k \tau} f(-)\right]^{-1} T=\left[e(+) e^{k \tau} f(+)+e(-) e^{-k \tau} f(-)\right]^{-1}$
Series Approach:
Using the same form of the Interaction Principle as before, $\binom{I^{-}(\tau)}{I^{+}(0)}\left(\begin{array}{ll}R(\tau, 0) & T(0, \tau) \\ T(\tau, 0) & R(0, \tau)\end{array}\right)\binom{I^{+}(\tau)}{I^{-}(0)}$, and solving for $I(\tau)$:
$\binom{I^{+}(\tau)}{I^{-}(\tau)}=\left(\begin{array}{cc}T^{-1}(\tau, 0) & -T^{-1}(\tau, 0) R(0, \tau) \\ R(\tau, 0) T^{-1}(\tau, 0) & T(0, \tau)-R(\tau, 0) T^{-1}(\tau, 0) R(0, \tau)\end{array}\right)\binom{I^{+}(0)}{I^{-}(0)}$. Then $e^{A \tau}=\left(\begin{array}{cc}T^{-1} & -T^{-1} R \\ R T^{-1} & T-R T^{-1} R\end{array}\right)$ for a vert homogeneous layer.

From the previous equation for $\left.e^{A \tau}, T^{-1} \cong 1+t \tau+\left(t^{2}-r^{2}\right) \frac{r_{2}^{2}}{2!}-\left[t\left(t^{2}-r^{2}\right)-r(r t-t r)\right]_{\frac{z^{3}}{3}}\right\}\left\{\left[t\left[\left(t^{2}-r^{2}\right)-r(r t-t r)\right]-r\left[r\left(t^{2}-r^{2}\right)-t(r t-t r)\right] \frac{\tau^{\frac{t^{4}}{4!}}}{}\right.\right.$
$\left.T=1-t \tau+\left(t^{2}-r^{2}\right) \frac{r^{2}}{2!}-\left[t\left(t^{2}-r^{2}\right)-r(r t-t r)-t r^{2}-r^{2}\right]\right]_{3!}^{3}+\left\{27 t\left[t\left(t^{2}-r^{2}\right)-r(r t-t r)\right]+r\left[r\left(t^{2}-r^{2}\right)-t(r t-t r)\right]-6\left(t^{2}-r^{2}\right)^{2}-24 t^{2} r^{2}-24 t r^{2} t\right\} \frac{\}^{4}}{4!}$ And recall $R=T \eta$, so

$$
R=r \tau-(r t+t r) \frac{\tau^{2}}{2!}+\left[r\left(t^{2}-r^{2}\right)-t(r t-t r)+3\left(t r t-t^{3}\right)\right] \frac{\tau^{3}}{3!}-\left\{\left[\left[r\left(t^{2}-r^{2}\right)-t(r t-t r)+2 r t^{2}+6 r^{3}+2 t r t\right]+r\left[t\left(t^{2}-r^{2}\right)-r(r t-t r)+4 t r^{2}-6 r^{2} t+16 r t r\right]\right\} \frac{\tau^{\frac{1}{2}}}{4}\right.
$$

RESULTS

The Eigenmatrix, Series, and Doubling Approaches were evaluated by computing radiances from each (500 times) and comparing the runtime. Doubling was always the slowest method for all but the smallest operations (matrix multiplications, inversions, etc) required the same time run at all optical depths. The Series Approach, however, ran noticeably faster at $\tau<0.1$.

Below is a graph showing how the methods compared as a unction of optical depth. The times shown are worst-case; that is, each method was run for a wide range of asymmetry parameter (g) and single scatter albedo $\left(\omega_{0}\right)$ and the slowest time was used to create the graph.

The Series Approach can decrease computational time by as much as a factor of two, but even worst-case scenarios (shown above) yield a decrease of 50%.

How significant is this? Consider a retrieval with 30 layers and 1,000 wavenumbers. That requires 30,000 pairs of R and T matrices to 1,000 wavenumbers. That requires 30,000 pairs of R and T matrices to
be calculated. For example, if the optical depth is small enough, the be calculated. For example, if the optical depth is small enough, the
retrieval runtime could be reduced from 3.4 minutes to only 2.5 minutes maybe even 1.7 minutes if some general assumptions about ω_{0} and g can be made).

The new Series Approach has a likely future on the CloudSat satellite (2003) to optimize onboard processing time for stratospheric and upper tropospheric retrievals

