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RESULTS

The Eigenmatrix, Series, and Doubling Approaches were evaluated

by computing radiances from each (500 times) and comparing the

runtime. Doubling was always the slowest method for all but the smallest

of optical depths. The Eigenmatrix Approach with the constant number of

operations (matrix multiplications, inversions, etc) required the same time

to run at all optical depths. The Series Approach, however, ran noticeably

faster at t < 0.1.

Below is a graph showing how the methods compared as a

function of optical depth. The times shown are worst-case; that is, each

method was run for a wide range of asymmetry parameter (g) and single

scatter albedo (w0) and the slowest time was used to create the graph.

The Series Approach can decrease computational time by as much

as a factor of two, but even worst-case scenarios (shown above) yield a

decrease of 50%.

How significant is this? Consider a retrieval with 30 layers and

1,000 wavenumbers. That requires 30,000 pairs of R and T matrices to

be calculated. For example, if the optical depth is small enough, the

retrieval runtime could be reduced from 3.4 minutes to only 2.5 minutes

(maybe even 1.7 minutes if some general assumptions about w0 and g

can be made).

The new Series Approach has a likely future on the CloudSat

satellite (2003) to optimize onboard processing time for stratospheric and

upper tropospheric retrievals.
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FORMULATION

Eigenmatrix Approach:

Series Approach:
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For the Eigenmatrix and Series Approaches, a basic form of the Interaction Principle will

be used, namely:

IOUT = f (IIN )    such that I(t) = eAt I(0)

In other words, the radiation leaving a layer of atmosphere can be expressed as a function

of the radiation entering the atmosphere, given that the radiation incident at the bottom of

the layer is a “propagation function” of the radiation incident at the top of the layer.
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Using a series expansion,

And then a series “compression”:                                , where                                and                   .

Then 

Since I(t)=f(I(0)),                                                .   Rearranging yields 

Introducing the global bidirectional reflection/transmission matrix… 
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Using the same form of the Interaction Principle as before,                                                      , and solving for I(t): 

.  Then                                        for a vert homogeneous layer.

Since                      ,

Define                                                                                                                       . Then                       .

From the previous equation for eAt,

And recall               , so 
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BACKGROUND

This study grew from a project in a Radiative Transfer

course instructed by Philip Gabriel and Graeme Stephens at

CSU in Fall 1999. The project involved Gaussian Quadrature,

Phase Functions, and local bidirectional reflection and

transmission functions.

From there, it was expanded to include global

bidirectional reflection and transmission matrices using the

“Eigenmatrix Approach”, which takes advantage of the

relationships between eigenvalues, eigenvectors, and the

inverses of the eigenvectors.

It was at this point that Philip Gabriel suggested

applying a power series expansion to a form of the Interaction

Principle. After deriving that, an elegant new form of the

global bidirectional matrices was found. However, by the

nature of a power series, the “Series Approach” would be

limited to small optical depths… although how small was

unknown at the time.

Drawbacks of this method are that it is only an

approximation (truncated infinite sum) and that it requires

accurate knowledge of the optical depth t (exponents on t

amplify any uncertainties). Advantages to this method are its

symmetry (allowing for recursion) and the low number of

terms required for high precision (fewer matrix operations).

The formulation of both methods will be presented in an

abbreviated form here (“Doubling” is used in the comparison,

but will not be shown in the Formulation section in the interest

of space). The utility of this study is to arrive at the most

streamlined radiative transfer algorithm… in this case, a

retrieval would automatically select a particular method,

based on optical depth, with a goal of shaving seconds or

even minutes off of near-real-time calculations.
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