UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & **ATMOSPHERIC SCIENCE**

S. J. Majumdar¹, B. D. McNoldy¹, B. Annane², S. M. Leidner³, R. Atlas⁴ & R. N. Hoffman² 1. University of Miami / RSMAS, 2. University of Miami / CIMAS and NOAA/AOML 3. Atmospheric and Environmental Research (AER) Inc., 4. NOAA/AOML Acknowledgments: Chris Ruf and the CYGNSS Science Team

1. CYclone Global Navigation Satellite System (CYGNSS)

Constellation of 8 micro-satellites. Launched 15 December 2016.

- Capable of retrieving a large range of surface wind speed data in all precipitating conditions, with frequent revisit times.
- Receives GPS L-band signals at 19-cm wavelength
- Low-Earth orbit: 35S-35N
- Spatial resolution: 25 km
- Wind speed dynamic range: 0-70 m/s
- Median / mean revisit time: 2.8 h / 7.2 h

Reference: Ruf, C. et al., 2016: New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection, Bull. Amer. Meteor. Soc., 97, 385-395.

This study: Assess potential impact of assimilating CYGNSS data prior to launch, using Observing System Simulation Experiments (OSSEs)

2. Purposes of OSSEs

Observational network design

Assess impact of assimilating data from future platforms

- Future satellites or other platforms not yet built
- Different orbital configurations
- Design and configuration trade-offs of a given platform
- "Optimal mix" of different instruments
- Identify state variables, accuracy, and spatial/temporal/spectral density and resolution of data needed to significantly impact NWP

Assess impact of assimilating data from existing platforms

- Selective thinning and targeting of satellite radiances
- Aircraft flight tracks
- Optimal mix of existing observations

Reference: Hoffman, R. N., and R. Atlas, 2016: Future Observing System Simulation Experiments, Bull. Amer. Meteor. Soc., 97, 1601-1616.

Other Applications of OSSEs

- Developing and testing new data assimilation schemes
- Predictability and sensitivity studies in a controlled environment
- **Extensions: Oceans; Chemistry; Coupled Systems**

Evaluation of the Impact of Synthetic CYGNSS Wind Speed Data on Tropical **Cyclone Structure Analyses and Forecasts in a Regional OSSE**

Soc. J., **51**, 7-15.

CYGNSS improves the forecasts further.

7. Summary

- analyses and short-range forecasts
- wind radii and IKE
- in GSI
- DA cycling frequency affects quality of analyses
- data. Symmetry and coverage affect the result
- resolution and/or smoother data
- Note: results are for a limited sample

8. Current and Future Work

- data for selected tropical cyclones in 2017
- Doppler Wind Lidar and Atmospheric Motion Vectors
- NASA MERRA-2; NASA CCMP.

TROPICAL CYCLONE OPERATIONS AND RESEARCH FORUM / 71ST INTERDEPARTMENTAL HURRICANE CONFERENCE, 14-16 MARCH 2017, MIAMI, FL

• Assimilation of CYGNSS data with GSI almost always improves track and intensity

CYGNSS data have greatest impact on **storm structure metrics** such as critical

Adding **directional information** to the CYGNSS wind improves hurricane analyses

GSI analyses are limited: very sensitive to the exact location of the observational

Higher-resolution and/or noisier data degrade analyses when compared to lower-

Retrospective HWRF analyses and forecasts with the addition of actual CYGNSS

• Synergistic utilization of future space-borne observations, including CYGNSS,

New gridded ocean surface wind vector analysis products using CYGNSS throughout the tropics, created using the VAM. Background fields: NCEP GFS;