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ABSTRACT

Hurricane forecast graphics have the challenging task of communicating information about spatial
and temporal uncertainty. Although forecasting accuracy has improved, the popular track forecast
cone or “Cone of Uncertainty” graphic, produced by the National Hurricane Center, is poorly
understood by the general public. A better understanding of the forecast can potentially assist in
timely decisions and life-saving actions. This study evaluates the impact of visualization design,
tropical cyclone characteristics, subjective numeracy, and subjective graphicacy on visual attention
to and user interpretation of hurricane forecast graphics. Forty-three non-expert participants com-
pleted forecast path estimates for nine tropical cyclones, comparing their responses when using
the National Hurricane Center’s cone of uncertainty graphic and two alternative forecast visualiza-
tions. Results show that design modifications did not alter visual attention patterns or improve
interpretations. Results also indicate that subjective numeracy, subjective graphicacy, and tropical
cyclone characteristics, in combination, influence estimates of hurricane forecast tracks. The find-

ings from this study inform redesign efforts of hurricane risk communication products.

1. Introduction

When tropical cyclones (TCs) including hurricanes threaten,
people access information about them from different sources
(Broad et al, 2007; Dash & Gladwin, 2007; Huang et al.,
2012). They rely on television, radio, websites, mobile appli-
cations, and informal social networks to evaluate risk and
make decisions. Media sources communicate the risk of hur-
ricanes through a variety of forms, both visual and non-vis-
ual. Frequently, media show the possible future path of the
center of the TC accompanied by a “cone of uncertainty”
(COU), a product created by the National Hurricane Center
(NHC), officially named the “Tropical Cyclone Track and
Watch/Warning Graphic,” and first unveiled in 2002 (see
Figure 1).

The COU graphic provides the track forecast of the cen-
ter of the storm, together with an estimate of track forecast
uncertainty, and shows areas under a watch or warning.
Technically, the cone of uncertainty represents the area
within which the center of the TC has a 67% chance of
appearing, based on NHC’s track forecast error statistics
over the previous five years. Although newer products have
been developed and may be more directly relevant to the
hazards (e.g., winds, storm surges), the cone of uncertainty
remains the most widely used graphic by the media and the
general public (Millet, Carter, et al., 2020).

Notwithstanding its widespread use, this graphic has sev-
eral shortcomings and is often criticized for leaving out
important information (Demuth et al., 2012). Simultaneously,
the graphic is overloaded with many different types of infor-
mation: in addition to forecast uncertainty, the projected
track line, and watches and warnings, the graphic also pro-
vides a detailed map legend that includes TC classifications
(e.g., tropical storm, hurricane, major hurricane). The range
of information presented, and the graphic features employed
all contribute to visual clutter and information overload (e.g.,
Eppler & Mengis, 2004).

While the amount and type of information in the overall
graphic are problematic, research has also shown that the
cone element itself leads to misinterpretation. Some people
interpret the cone as a boundary for storm risk (Liu et al,
2015; Ruginski et al., 2016). This leads some people to feel
safer in locations just outside the cone limits (Broad et al,
2007; Cox et al., 2013; Wu et al.,, 2014), or even to believe
that there is no imminent risk beyond the cone. By design,
however, there is in fact a one-third chance that the center
of the storm will not be within the cone at all. In addition,
people misinterpret the COU’s central black line, not recog-
nizing its inherent uncertainty or the line’s function as only
depicting the center of the storm. Thus, evidence suggests
that people believe that areas along the central line are in
greater danger than those in the vicinity of the track line.
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Figure 1. An example of a hurricane forecast cone typically presented to end users by the National Hurricane Center (NHC 2018; https://www.nhc.noaa.gov/arch-

ive/2018/FLORENCE_graphics.php?product=5day_cone_no_line).

Importantly, people also often fail to recognize that the
size and intensity of the storm are not represented by the
cone element in the graphic. For example, instead of con-
struing the widening shape of the cone as representing more
uncertainty as the forecast moves further into the future,
users often misread the shape as indicating that the hurri-
cane grows larger over time (Boone et al, 2018; Liu et al,
2015; Padilla et al, 2017; Ruginski et al, 2016).
Furthermore, research indicates that people may use a heur-
istic relating the cone size to storm intensity (Padilla et al,,
2017; Ruginski et al., 2016).

To address shortcomings of the COU, researchers have
proposed modifications to the cone and developed alterna-
tive visualizations to communicate risk. Cox et al. (2013)
explored ensemble path visualization focused on showing
the uncertainty associated with hurricane predictions. Their
alternative approach relied on direct visualization of an
ensemble of possible hurricane tracks generated from histor-
ical data and current advisory information. Their study
compared the ability of non-experts to estimate the spatial
distribution of hurricane impact probability based on either
their visualization or the NHC’s cone of uncertainty.
Findings indicated that, in comparison to the COU, their
alternative visualization allowed participants to glean more
information about path uncertainty; however, overall, the
information was more difficult to interpret.

Subsequently, Liu et al. (2015) developed a time-varying
ensemble display to provide wusers with information

regarding the predicted state of a storm at a specific time.
Their approach relied on estimates of the likelihood of hur-
ricane risk by interpolating simplicial depth values in the
path ensemble. In doing so, they developed a time-varying
display presenting potential hurricane paths and locations,
including a representation of forecast uncertainty and storm
characteristics. Although they did not formally evaluate their
visualization, they revealed that their graphic also contrib-
uted to a misperception that the storm increases in size as
the risk region increases.

Other research efforts have explored the impact of visual-
ization type on novice judgments of potential storm damage
(Padilla et al., 2017; Ruginski et al., 2016). These studies
explored the effects of summary and ensemble displays on
interpretations of hurricane uncertainty data. Consistent
across the studies, findings indicated that novice users inter-
preted hurricane size and intensity differently when viewing
COUs and ensemble displays.

Alternative hurricane visualization efforts have been
focused on improving representations of uncertainty.
However, these attempts have not considered the influence
of specific design elements on the users’ ability to interpret
the graphic. Therefore, in this study, we examine how non-
expert users interpret visualizations displaying uncertainty in
hurricane forecasts, specifically by exploring how visualiza-
tion design influences the prediction of uncertain spatial tra-
jectories. In a laboratory setting, we compared non-expert
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Figure 2. NHC cone of uncertainty (with minor visual design modifications made by the authors).

responses to the COU product against alternative forecast
graphics and explored how elements in the visualization
attract attention and influence interpretations of hurri-
cane risk.

2. Methods

This research complied with the American Psychological
Association Code of Ethics and was approved by the
Institutional Review Board at the University of Miami.

2.1. Participants

Forty-three university students recruited via an email list
participated in the study. All participants were screened for
color vision deficiency. Participants were compensated with
a $25 gift card.

2.2. Stimuli

For this study, we produced three visualization designs using
Automated Tropical Cyclone Forecasting System (ATCF)
data from nine tropical cyclones from 2011 to 2018, overlaid
on a map of the United States, and modifying colors,
legends, and arrangement of the traditional NHC COU. The
traditional COU, which has been operational since 2002,

contains a hard boundary whose distance from the forecast
point is calculated as the 67th percentile of all NHC forecast
errors of tropical cyclone tracks over the previous 5 years.
The inside of the cone is colored white with the hard
boundary represented by a solid black line. The first design
was the existing NHC COU (see Figure 2), with only minor
updates to increase color contrast, highlighting the cone
over the ocean and landmass.

We developed two alternative versions of the NHC COU
to eliminate the hard boundary, a feature known to lead to
the common misinterpretation that if one is outside of that
boundary, one is safe from the storm. The second design
(see Figure 3), our COU Redesign A (RDNA), blurred the
boundaries of the cone and used a uniform, diffuse gray
shading. In addition, we added a “How to Read the Cone”
textual explanation above the map. Colors for watches and
warnings were also changed to a sequential color palette
ranging from light yellow (for Tropical Storm watches) to
dark red (for Hurricane warnings.) The legend at the bot-
tom of the map in this version added contextual explana-
tions of map abbreviations: M for major hurricane, H for
hurricane, S for tropical storm, and D for trop-
ical depression.

The third design (see Figure 4), our COU Redesign B
(RDNB), used different gradations of the diffuse gray shad-
ing. Regions closest to the official NHC forecast position
were shaded darker, and regions further were lighter. More
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Figure 3. Redesign A (RDNA) of the NHC cone of uncertainty.

precisely, the 33rd, 50th, and 67th percentiles of the previ-
ous 5years of NHC track forecast errors were computed,
using forecast error data provided to our team by the NHC.
Circles with a calculated radius for the 33rd percentile were
then filled with the darkest diffuse shading, followed by
lighter shading for the radius corresponding with the area
between the 33rd and 50th percentile, and even lighter shad-
ing corresponding to the area between the 50th and 67th
percentile. Therefore, the shadings represent a 33% chance
that the center of the storm will pass within the innermost
cone, a 50% chance that the center of the storm will pass
within the innermost or the intermediate shaded cones, and
a 67% chance that the center of the storm will pass within
an area inside all three cones. This design also modified the
NHC COU by depicting separate maps for watches, warn-
ings, and the cone, while also maintaining the changes in
the legend and color schemes of the RDNA. In addition, the
“How to Read the Map” legend was expanded from the
RDNA. Across the designs, fictional names were assigned to
each storm in the stimuli, but herein we report the actual
names of the storms.

RDNA and RDNB were inspired by a literature review
on misinterpretations of hurricane forecast products (Millet,
Carter, et al, 2020). As most of the literature on

visualization design focuses on the forecast track and its
uncertainty, we decided to broaden our analysis to include
other important design elements. This shift was confirmed
through a user-centered design approach involving eight
focus groups conducted in South Florida. This generative
research revealed specific design elements, beyond the cone
itself, that contribute to misinterpretations of the intended
message. The findings from our focus groups directly
informed our redesign efforts. For example, participants
observed “clutter” in the graphic that, according to them,
“was trying to stack” too many layers of information into a
single display. This, for instance, led to one of the decisions
for RDNB: separating the forecast path from the watches
and the warnings, and instead devoting one map to each.
Additional findings from the focus groups are provided in
Millet, Cairo, et al. (2020) and will be discussed in greater
detail in a future article.

2.3. Task

As in Cox et al. (2013), for each trial, participants were
asked to estimate the probability that the center of the hur-
ricane would traverse each of eight sectors, corresponding to
the cardinal and ordinal points of the compass (N, NE, E,
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Figure 4. Redesign B (RDNB) of the NHC cone of uncertainty.

..., NW). These sectors generated 45-degree arcs around
the center of the tropical cyclone. The size of the circle
encapsulating the sector was held constant across trials and
sized to accommodate chip placement. Participants were
instructed to place a set of numbered chips in the sectors to
indicate their estimate of the probability that the tropical
cyclone would exit the circle in the corresponding sector
(i.e., strike percentage). The chips ranged in value from 1 to
20 and had a cumulative value of 100. There were two chips
valued at 20, four at 10, three at 5, and five 1s.

2.4. Equipment

The data collection platform was coded using HTML,
JavaScript, and D3.js JavaScript library. We used Airtable, a
spreadsheet-database hybrid, for data storage. Across all tri-
als, the Airtable database stored participants’ ID, along with
the sums of chip values assigned to the eight sectors, the
name of the storm, the visualization design, and the task
time. The data were posted directly through JavaScript via

Ajax. The data collection platform was executed from a local
folder using a web server for Google Chrome.

Eye tracking, electrodermal activity, and facial expressions
were recorded. A Tobii X2-60 eye-tracking system, with a
sampling rate of 60 Hz, recorded eye movements while par-
ticipants completed tasks. Shimmer3 GSR (Galvanic Skin
Response) electrodes were attached to two fingers of partici-
pants’ non-dominant hand. Affectiva’s Affdex technology
captured participants’ facial expressions and provided a clas-
sification of emotional states. Affectiva’s Affdex and
iMotions Facet technology captured real-time frame-by-
frame (30 fps) facial expressions from the video stream. All
data were collected using the iMotions data integra-
tion platform.

2.5. Experimental design and measures

In this study, we examined how interpretations of hurricane
forecasts are influenced by design elements. We utilized a
mixed design including repeated measures for Tropical
Cyclone (9) x Visualization Design (3), resulting in a total of
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27 trials per participant. The order of presentation was
determined using a diagram-balanced Greco-Latin rectangle
(Lewis, 1993) to simultaneously counterbalance the presenta-
tion of the visualization method, the hurricane advisory set,
and the pairing of the two.

2.5.1. Independent variables

The primary independent variables were two within subject
factors, visualization design, and tropical cyclone advisory.
The visualization designs were the COU, a modified NHC
cone of uncertainty (RDNA), and an alternative visualization
(RDNB). The tropical cyclones used were Irene (2011,
Advisory 12), Lee (2011, Advisory 2), Isaac (2012, Advisory
7), Sandy (2012, Advisory 19), Matthew (2016, Advisory 27),
Harvey (2017, Advisory 15), Irma (2017, Advisory 34),
Maria (2017, Advisory 5), and Florence (2018, Advisory 50).
The secondary independent variables were two between-sub-
ject factors: graphicacy and numeracy. Graphicacy was
measured using the Subjective Graph Literacy (SGL) scale
developed by Garcia-Retamero et al. (2016). The SGL is a
10-item instrument for estimating perceptions of graph
comprehension. Item responses were scored using a 6-point
Likert scale, with a score of 1 indicating the least perceived
skill. The overall score was calculated by averaging the
scores across the 10 items. The validity and reliability
(Cronbach’s alpha=.87) of SGL was demonstrated previ-
ously (Garcia-Retamero et al.,, 2016). Numeracy was meas-
ured using the Subjective Numeracy Scale (SNS) developed
by Fagerlin et al. (2007). The SNS is an 8-item instrument
that measures participants’ preference for the presentation
of numerical information and perceptions of their own
mathematical ability. Responses are scored using a 6-point
Likert scale, with 1 corresponding to the least perceived skill.
The overall numeracy score was calculated by averaging the
scores across the eight items. We also calculated average
scores for the two subscales for preference and mathematical
ability. The validity and reliability (Cronbach’s alpha=.82)
of SNS was demonstrated in an earlier study (Zikmund-
Fisher et al., 2007).

2.5.2. Dependent variables
The dependent variables included completion time, compre-
hension, eye movement, electrodermal activity, valence of

emotional expression, mental workload, perceived ease of
use (UMUX-Lite), and preference. Completion time was
measured, in seconds, from page load until the participant
pressed the “Next” button when completing each trial
Comprehension was measured by converting the strike per-
centage to a discord score, derived by subtracting participant
scores from expert opinion and then taking the sum of the
absolute value of discord scores across all sectors for each
tropical cyclone. This score thus represented the level of dis-
agreement between participants and experts (three meteorol-
ogists, all of whom had 15years or more experience in
hurricane forecasting).

Expert sessions were conducted remotely, using the same
data collection platform (see section 2.3), but excluded eye
movement data and other psychophysiological metrics.
Although we gave the storms fictitious data (e.g., names,
dates), the experts did recognize a few historical storms.
However, the experts were asked to make path estimates
based on the data presented and not on their recollections
of actual tropical cyclone paths. When the experts recog-
nized the actual storms, they attempted to provide estimates
based solely on the advisory information shown and also
explicitly pointed out where the actual TC path deviated
from the forecast shown. Only the estimates made based on
the advisory information presented were recorded. Whether
their prior knowledge influenced their estimates is a factor
outside of the scope of this study and a possible limitation
that can be addressed in future studies.

The eye movement measures were dependent on the
assignment of Areas of Interest (AOIs). We defined a set of
AQIs on the visualizations corresponding to features con-
taining information essential for completing the task. For
analysis purposes, we divided the instructions, map, and
legend into more specific bits of information (ie.,
Instructions; Map: Cone and Map: Watches & Warnings
(RDNB only); Legend: Advisory & Current Information,
Legend: Forecast Positions, and Legend: Watches &
Warnings), as marked in Figure 5. For each participant, we
computed the number and length of time (Fixation Count,
Average Fixation Duration, and % Dwell Time) viewing
each AOL

Electrodermal activity was collected to capture arousal
response. Electrodermal data was recorded as soon as the
participant sat at the workstation to provide reliable baseline



values. We also presented a calibration slide—a gray
screen—at the start of the experiment. The duration of the
baseline stimulus was 60s. For the analysis, we evaluated the
number of galvanic skin response (GSR) peaks that occurred
during the trial. GSR only generates information about the
arousal dimension; we therefore also included facial expres-
sion analysis to capture emotional valence using automated
facial expression analysis. The measures for valence indi-
cated the percentage of time an emotional expression fit the
classification of positive or negative valence.

The mental workload was assessed with the NASA Task
Load Index (NASA-TLX), by calculating the average of the
six subscales (mental demand, physical demand, temporal
demand, performance, effort, and frustration), where each
was scored on a 0-20 scale (Hart & Staveland, 1988).
Perceived ease of use was assessed using the UMUX-Lite, a
2-item instrument with a 7-point response scale (Lewis
et al, 2013). Preference for visualization was assessed by
asking participants to rank the visualizations from 1 (most
preferred) to 3 (least).

2.6. Procedure

When participants arrived at the lab, a researcher described
the purpose of the research, what to expect during the ses-
sion, and participants’ rights. Informed consent was
obtained from each participant. Participation in this experi-
ment was conducted one participant at a time, lasting
approximately 60 minutes per session.

Upon starting the study, participants completed a pre-test
questionnaire that solicited demographic information and
listened to verbal instructions explaining the task and the
goal of the experiment. Afterward, participants completed a
9-point calibration eye-tracking exercise. Two electrodes,
monitoring electrodermal activity, were attached. To ensure
data integrity, distance from the monitor and tracking qual-
ity were observed and corrected (if needed) throughout
the study.

For each trial, participants were asked to estimate the
probability that the center of the TC would traverse each of
the eight sectors. We explicitly instructed participants to
base their estimates of strike percentage on timepoints at the
edge of the sectors. Before the estimation task, participants
were presented with the TC visualization and were asked to
study the map to determine the TC’s path based on the
information presented. The preview was identical to the task
view, except that the sectors and chips were excluded. The
estimation task was self-paced.

When participants finished all trials with a visualization
design, the perceived workload was measured using the
NASA Task Load (Hart & Staveland, 1988). Participants also
rated ease of use for each visualization design using the
UMUX-Lite questionnaire (Lewis et al., 2013). After partici-
pants completed the questionnaire, they were given a 2-min
break, and then the process was repeated with the remaining
visualization designs. Finally, participants ranked the visual-
ization methods in order of preference and answered
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questions about what they liked, disliked, and would change
about each visualization.

2.7. Analysis strategy

All analyses were conducted using SPSS version 27.0 (IBM
Corp, 2020). A series of mixed-effect models were used (also
known as multilevel models; Raudenbush & Bryk, 2002) to
account for within-person and between-person variabilities
separately, providing an unbiased examination of associa-
tions between predictors (visualization design and TC) and
outcomes (comprehension, completion time, eye movement
metrics). First, we entered visualization design and TC
conditions as within-person predictors (at the 1st level;
within-person main effect model). Second, pre-test scores of
participants’ numeracy and graphicacy were entered into the
within-person effect model as a between-person covariate (at
the 2nd level; within- and between-person main effect
model). Only significant results were included for subse-
quent analyses. Third, we examined the potential two-way
interaction effects between within-person predictors (visual-
ization design and TC conditions) and between-person pre-
dictors (numeracy and graphicacy). This model is known as
a cross-level interaction effect model (with within-person
between-person predictors). Interaction effects were exam-
ined by entering a product term (e.g., visualization design *
numeracy) into the model described in the second step
(within- and between-person main effect model). Fourth, we
also examined the within-person interaction effects between
visualization design and TC on outcomes. Bonferroni cor-
rection was applied to adjust the significance level (p-value)
of the analyses for multiple comparisons of the statistical
tests. Restricted Maximum Likelihood (REML) was used to
estimate accurately within- and between-person effects
(Peugh, 2010). For user preference, we analyzed the rank
data using the Friedman test. Last, mixed-design ANOVAs
were used to compare subjective metrics capturing mental
workload (NASA TLX) and perceived ease of use (UMUX
Lite) by visualization design.

3. Results
3.1. Sample characteristics

The 19 male and 24 female participants were between the
ages of 19 and 47 (M =25.70, SD=6.35). Most participants
(81.4%) had prior experience with the COU graphic, having
lived in an area threatened by tropical cyclones.

3.2. Graphicacy and numeracy

Participants had a mean total graphicacy score of 4.67 (SGL:
SD=0.75, ranging from 2 to 6). Participants scored lowest
in their perceived skill in projecting a future trend from a
line chart (M=4.19, SD=1.38, ranging from 1 to 6).
Additionally, the participants scored highest in their percep-
tions of frequency in finding graphical information to be
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useful (M =5.02, SD=0.94, 3-6). Cronbach’s alpha for the
SGL scale in our sample was 0.86.

Participants had a mean total numeracy score of 4.56
(SNS: SD=0.91, ranging from 3 to 6). Participants scored
lowest in their perceived skill in calculating a 15% tip
(M =4.02, SD=1.63, ranging from 1 to 6). In addition, the
participants scored highest in their perceptions of frequency
in finding numerical information to be useful (M=5.16,
SD=0.98, 3-6). Cronbach’s alpha for the SNS scale in our
sample was 0.78. Graphicacy scores were significantly and
positively associated with numeracy scores, r=.618, p < .001.

3.3. Comprehension

The overall results for average discord score (our proxy for
comprehension, where lower discord scores indicated greater
comprehension) were COU M =41.368 (SD=27.095), RDNA
M=45714 (SD=28.858), and RDNB M =43.209
(SD =28.044). The overall results by TC for the mean discord
score are shown in Figure 6. Associations between visualiza-
tion design and discord score showed that participants’ com-
prehension varied depending on the visualization design [F(2,
1108) =3.438, p <.05]. In particular, the mean discord score
for RDNA was significantly greater than for COU (p <.05).
In post-study interviews, participants indicated that the
RDNA cone was difficult to see because the diffused gray
shading was too light. Further, we found that participants’
comprehension also varied depending on the TC [F(8,
1108) = 34.62, p <.001]. Specifically, the mean discord scores
for TC Harvey and Lee were higher than for others in the set
(see Figure 6). Both storms were slow-moving and therefore
had more compact cone shapes than the others (see
McNoldy, 2022 for information about cone shape).

Even after controlling for the effects of numeracy and
graphicacy, associations of visualization design and TC with
discord scores remained, with significant associations
between visualization design and discord scores [F(2,
1108) =3.438, p <.05] and between TC and discord scores
[F(8, 1108)=34.62, p<.001]. We also found that the

associations between numeracy and discord scores were sig-
nificantly positive [F(1, 40)=6.32, p <.05]. However, the
associations between graphicacy and discord scores were not
significant [F(1, 40) =0.00, p =.993].

Results of the cross-level interactions among within-person
predictors (visualization design and TC) and the between-per-
son predictor (numeracy) on discord scores indicated no sig-
nificant interaction effects between visualization design and
numeracy on discord scores [F(2, 1088)=.63, p=.52].
However, an interaction effect between TC and numeracy on
discord scores was significant [F(8, 1088)=2.640, p <.01].
For interpretation of this significant cross-level interaction
effect, subgroup analyses were conducted. Based on a median
split (Mdn =4.625), 22 participants were assigned to a higher
numeracy group (M =5.304, SD=0.417) and 21 to a lower
numeracy group (M=3.77, SD=0.565). We examined how
the association between TC and discord scores varied
depending on the numeracy group. We found a significant
interaction effect between TC and numeracy [F(8,
1098) =2.56, p < .01] only for one TC (see Figure 7). That is,
when estimating TC Sandy’s path, participants who had low
levels of numeracy had higher discord scores compared to
those who had high levels of numeracy [M=60.968 (low
numeracy) vs. 36.909 (high numeracy), p <.001].

Results of the cross-level interactions among within-per-
son predictors (visualization design and TC) and the
between-person predictor (graphicacy) on discord scores
indicated no significant interaction effect between visualiza-
tion design and graphicacy on discord scores [F(2,
1088) = .47, p = .62]. However, as detected for numeracy, an
interaction effect between TC and graphicacy on discord
scores was also significant [F(2, 1088) =1.97, p <.05]. For
interpretation of this significant cross-level interaction effect,
subgroup analyses were conducted. Based on a median split
(Mdn=4.900), 22 participants were assigned to a higher
graphicacy group (M=5.25, SD=0.34) and 21 to a lower
graphicacy group (M =4.09, SD=0.59). We examined
how the association between TC and discord scores
varied depending on the graphicacy group and found a



80 |

60 |

40 |

Mean Discord Score

20 |

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION e 9

Numeracy Group

— Below the Median
- - - Above the Median

Irene Lee Isaac Sandy Matthew

Harvey Irma Maria Florence

Tropical Cyclone
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Figure 8. Mean discord score by a tropical cyclone and graphicacy group. A higher discord score corresponds to a lower level of comprehension.

significant interaction effect between TC and graphicacy
[F(8, 1098) =2.04, p <.05] for only one TC: Florence (see
Figure 8). That is, when estimating TC Florence’s path, par-
ticipants who had low levels of graphicacy had higher dis-
cord scores compared to those who had high levels of
graphicacy [M =41.407 (low graphicacy) vs. 27.798 (high
graphicacy), p <.05]. All other pairwise comparisons were
not significant. Furthermore, results indicated non-signifi-
cant interaction effects between visualization design and TC
on discord scores [F(16, 1092) =1.54, p =.07].

3.4. Completion time

The overall results for mean completion time, in seconds, by
visualization design were COU M=62.43 (SD=1.27),
RDNA M=64.80 (SD=1.40), and RDNB M =63.39

(SD=1.63). The overall results for mean completion time
by TC are shown in Figure 9. Skewness and kurtosis values
for completion time were 2.99 and 15.51, respectively. After
log-transformation, skewness and kurtosis for completion
time were within the acceptable range (0.98 and 1.44,
respectively).

Results indicated no significant associations between visu-
alization design and completion time [F(2, 1108)=1.87,
p=-.15]. However, we did find significant associations
between TC and completion time [F(8, 1108)=6.46,
p <.01]. Even after controlling for the effects of numeracy
and graphicacy, associations between visualization design
and completion time remained non-significant [F(2,
1108) =1.87, p=.15] while associations between TC and
completion time remained significant [F(8, 1108)=6.46,
p <.01]. Results of post-hoc analyses indicated that average
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Figure 9. Mean completion time by a tropical cyclone and visualization design, with error bars +2 SE.

completion times for TCs Matthew and Isaac were signifi-
cantly higher (M =70.91 for Matthew; M =69.82 for Isaac)
than for TCs Florence, Harvey, and Sandy (M =61.41 for
Florence; M =57.38 for Harvey; M =59.14 for Sandy; all at
p<.05). Further, the average completion time of TC
Matthew was significantly higher compared to TC Irene
(M=62.79; p<.05). However, the associations between
numeracy and graphicacy themselves on completion time
were not significant [F(1, 40)=.24, p=.63 for associations
between numeracy and completion time; F(1, 40)=.57,
p =451 for associations between graphicacy and comple-
tion time].

For cross-level interactions, results of within-person pre-
dictors (visualization design and TC) and the between-per-
son predictor (numeracy) on completion time indicated a
significant interaction effect between visualization design
and numeracy on completion time [F(2, 1088)=3.945,
p <.05]. However, the interaction effect between TC and
numeracy on completion time was not significant [F(8,
1088) =.257, p=.979]. For interpretation of the significant
cross-level interaction effect, subgroup analyses were con-
ducted. Results indicated that participants in the lower
numeracy group completed path estimates more quickly
when using COU (M =59.35) than when using RDNA
(M =64.05; p <.05). However, this pattern was not detected
for participants in the higher numeracy group (p >.05) who
had similar completion times for both the COU (M = 65.38)
and RDNA (M =65.50). Results also indicated a significant
interaction effect between visualization design and graphi-
cacy on completion time [F(2, 1088)=12.79, p<.0l].
However, the interaction effect between TC and graphicacy
on completion time was not significant [F(2, 1088) =25,
p=.98]. We examined how the association between visual-
ization design and completion time varied depending on the
graphicacy group and found that participants in the lower
graphicacy group completed path estimates more quickly
when using COU (M =60.60) than when using RDNA
(M=70.17; p<.001) and RDNB (M=67.34; p<.05).
However, as in the numeracy results, this pattern did not
hold true for participants in the higher graphicacy group.
Furthermore, results indicated no significant interaction

effect between visualization design and TC on completion
time [F(16, 1092) = .64, p =.85].

3.5. Eye movement

We investigated where participants allocated attention to the
visualization designs when making path estimates. We iden-
tified the number of times (fixation count), the length of
time (fixation duration), and the percent of total time (%
dwell time) per AOIL The eye movement data did not meet
normality assumptions and was log-transformed for statis-
tical analyses (as in Hohenstein et al., 2017). For fixation
count, skewness and kurtosis values were 7.313 and 95.466,
respectively. After log-transformation, skewness and kurtosis
were within the acceptable range (1.471 and 1.220, respect-
ively). For fixation duration, skewness and kurtosis values
were 2.214 and 14.978, respectively. After log-transform-
ation, skewness and kurtosis were within the acceptable
range (0.376 and 1.818, respectively). Last, for % dwell time,
skewness and kurtosis values were 3.729 and 16.943, respect-
ively. After log-transformation, skewness and kurtosis were
within the acceptable range (0.268 and 1.120, respectively).

3.5.1. Fixation count

Fixation count, measured as the number of fixations on
each AOI across trials, varied by visualization design and
TC. Figure 10 shows the means for fixation count for the
different AOIs. Across the visualization designs and TCs,
participants had significantly higher numbers of fixations on
the cone element (Map: Cone) compared to all other AOIs
(see Table 1). For example, the mean of the Map: Cone AOI
(17.147) was higher than the mean of the Key: Watches &
Warnings AOI (M =0.457, t=1.752, p<.001). For COU
and RDNA, the Instructions AOI received the second high-
est fixation count. This is likely because the instructions are
at the top of the visualization design, aligning with top-
down viewing. RDNB had a significantly lower fixation
count for this AOI than COU (t=-.533, p<.001) and
RDNA (t=—.683, p <.001), likely because RDNB presented
the instructions mid-page, on a secondary panel. Another
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Table 1. Fixation count pairwise comparisons for the Map: Cone AOI.

AOIs Pairwise comparisons

Instructions

Key: Advisory & Current
Information

Key: Forecast

Key: Watches & Warnings

Map: Cone t=1.022, p <.001

t=1432, p<.001

t=1.727, p <.001
t=1.752, p < .001

contributing factor may be the improved clarity of the
instructions in RDNB, necessitating fewer revisits to achieve
comprehension. The topmost AOI for RDNB, the Key:
Advisory & Current Information AOI, having the same
information across all visualization designs, had the second
highest fixation counts. RDNB had significantly greater fix-
ation counts for this AOI than COU (¢=.320, p <.001) and
RDNA (t=.432, p<.001). The Map: Watches and
Warnings AOI in RDNB (the only visualization design to
explicitly separate watches and warnings), had the third
highest fixation counts (M=2.755, SD=7.271), indicating
that participants relied on watch and warning cues to assist
in the path estimation task.

3.5.2. Fixation duration

Fixation duration, representing how long participants looked
at a specific AOI, measured as the average duration for each
AOQI across trials in milliseconds (ms), varied by visualiza-
tion design and TC. Figure 11 shows the means for fixation
duration for each AOI of the different visualization designs.
Across the visualization designs and TCs, participants had
significantly longer fixation duration, on average, on the
cone element (Map: Cone) compared to all other AOIs (see
Table 2). For COU and RDNA, the Instructions AOI
received the second longest fixation duration. Similar to
findings from fixation count, this is likely because the
instructions are at the top of the visualization design align-
ing with top-down viewing. RDNB had a significantly
shorter fixation duration for the Instructions AOI than
COU (t=-1.483, p<.001) and RDNA (+=—1.688,
p <.001), even though the instructions in RDNB were much
longer than in the other designs. For RDNB, participants

had the second longest fixation duration on the Key:
Advisory & Current Information AOI For this AOI, RDNB
received a significantly greater fixation duration than COU
(t=811, p<.001) and RDNA (t=.970, p <.001). The Map:
Watches and Warnings AOI in RDNB had the third longest
fixation duration. Additionally, there were no significant dif-
ferences, by visualization design, in average fixation duration
for the Key: Forecast and for the Key: Watches & Warnings
AQIs (see Table 3), indicating that design improvements,
such as using a sequential-qualitative color palette (as in the
Key: Watches & Warnings AOI) or providing contextual
legends of expected wind force (as in the Key: Forecast
AQI), did not alter viewing time.

3.5.3. Dwell time

Dwell time represents the amount of time participants fix-
ated on a specific AOI, as a percentage of total time spent
on the trial. Figure 12 shows the mean dwell time for the
different AOIs of the visualization designs. Across the visu-
alization designs and TCs, participants had significantly lon-
ger dwell time, on average, on the cone element (Map:
Cone) compared to all other AOIs (see Table 4). However,
participants had a longer dwell time on the Map: Cone AOI
when interacting with the COU design than with RDNA
(t=.134, p<.001) or RDNB (t=.135, p<.001). The
Instructions AOI received the second longest dwell time
across visualization designs. RDNB had a significantly
shorter dwell time for the Instructions AOI than either
COU (t=-.313, p<.001) or RDNA (t=—.453, p<.001),
while COU had a significantly shorter dwell time than
RDNA (t=—.140, p<.001). The increased message length
in RDNA, compared to COU, may have contributed to lon-
ger dwell time, although an even greater message length did
not have the same effect for RDNB. Participants had the
second longest dwell time on the Advisory & Current
Information (Key) when using RDNB. RDNB had a signifi-
cantly longer dwell time for this AOI than COU (t=.218,
p<.001) or RDNA (t=.308, p<.001). The watch and
warnings maps, in RDNB, had the third longest dwell time.
There were no statistically significant differences, by
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Table 2. Average fixation duration pairwise comparisons for the Map:
Cone AOL.

AOlIs Pairwise comparisons

t=1.404, p < .001
t=2.472, p < .001
t=3.308, p <.001
t=3.416, p < .001

Instructions

Key: Advisory & Current Information
Key: Forecast

Key: Watches & Warnings

Map: Cone

Table 3. Average fixation duration pairwise comparisons for the key: forecast
and key: watches and warnings AOIls by visualization design.

Visualization designs Pairwise comparisons

Key: Forecast COU-RDNA t=.195, p>.05
COU-RDNB t=.146, p > .05
RDNA-RDNB t=—.050, p>.05

Key: Watches & Warnings COU-RDNA t=.152, p>.05
COU-RDNB t=.098, p>.05
RDNA-RDNB t=—.054, p>.05

visualization design, in dwell time for the Key: Forecast and
Key: Watches & Warnings AOIs (see Table 5) similar to the
patterns identified previously.

3.6. Workload

Data were analyzed to examine associations between visual-
ization design, numeracy, graphicacy, and overall workload.
The overall mean workload score for the forecast graphic
designs was 32.8 for the COU, 32.6 for RDNA, and 34.1 for
RDNB. Results from a mixed-design ANOVA indicated no
statistically significant differences in overall workload scores
by visualization design [F(2, 78) =.580, p =.562], graphicacy
[F(1, 39)=3.010, p=.091], numeracy [F(1, 39)=0.837,
p=.366], or their interactions.

3.7. Ease of use ratings

The ease of use ratings for each visualization design was cal-
culated by computing the UMUX-LITE score. The overall
mean score for the visualization designs was 69 for the
COU, 65 for RDNA, and 67 for RDNB. Results from a
mixed-design ANOVA indicated no statistically significant

differences in UMUX-Lite scores by design [F(2, 78) =1.73,
p=.18], graphicacy [F(1, 39)=0.094, p=.76], numeracy
[F(1, 39) =0.87, p=.36], or their interactions.

3.8. Preference

The mean ranks for visualization designs were 1.81 for the
COU design, 2.07 for RDNA, and 2.12 for RDNB (a lower
mean rank is better-closer to first place). The COU design
received the most first-place votes (19/43, 44%). When
selecting the COU as their preference, participants indicated
that familiarity with the graphic played an important role.
In fact, of the 19 participants who ranked the COU first,
58% favored RDNA as their second choice, suggesting a
preference for the visualization design which more closely
aligned to the COU. Analysis with a Friedman test, however,
showed no significant effect of visualization design on pref-
erence [X*(2) =2.279, p > .05].

3.9. Post-session interviews

Post-task interviews revealed additional factors, beyond
familiarity, that influenced participants’ visualization design
preference and interpretation. Cone design treatment was a
primary reason for top choice selection across the three
visualization designs. Other factors included treatment for
watches and warnings, color scale, layout, and legend
(Millet, Cairo, et al., 2020).

3.9.1. The cone

Of the 19 participants who selected the COU as their most
preferred, 18 indicated that their preference was because the
cone design’s high visual saliency drew their attention to the
perceived focal point of the graphic. However, of the five
participants providing interpretations, all provided erroneous
interpretations of what the cone is meant to convey, such as
indicating that the black border provides a boundary for the
location and impact of the storm and contains all possible
storm paths. Although the cone design was the top reason
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Table 4. Average dwell time pairwise comparisons for the Map: Cone AOI.

AOls

Pairwise comparisons

Instructions

Key: Advisory & Current Information
Key: Forecast

Key: Watches & Warnings

Map: Cone

t=.960, p <.001
t=1.205, p < .001
t=1437, p < .001
t=1.461, p <.001

Table 5. Average dwell time pairwise comparisons for the key: forecast and

key: watches and warnings AOls by visualization design.

Visualization designs

Pairwise comparisons

COU-RDNA
COU-RDNB
RDNA-RDNB
COU-RDNA
COU-RDNB
RDNA-RDNB

Key: Forecast

Key: Watches & Warnings

t=.056, p>.05
t=.045, p> .05
t=—011,p> .05
t=.044, p> 05
t=.037, p>.05

t=-.007, p> .05

for participants’ first choice of the COU, cone design was
also important to those who selected RDNA (11) and RDNB
(13), albeit to a lesser extent (63 and 46%, respectively).
Participant responses included both correct and incorrect
interpretations. The incorrect interpretations of the shaded
(“fuzzy”) cone, used in RDNA and RDNB, included that a
fuzzy boundary implies that the warning is less urgent and
indicates that the further you are from the center of the
cone, the less likely you are to feel storm effects. Correct
interpretations noted that the shading depicts the probability
that the storm can pass outside of the cone. For the RDNB
design, in particular, a few participants indicated that the
shaded cone with the gradient did a better job of conveying
the uncertainty in the forecast and eliminated “a false sense
of security.”

3.9.2. Watches and warnings

Of the 13 participants who selected the RDNB visualization
as their most preferred, seven explained that presenting the
watches and warnings separately influenced their preference.
For some, the separation of information better highlighted

coastal areas under threat. However, more participants (10)
stated directly that overlaid watches and warnings were crit-
ical for storm path estimation. This feedback aligns with eye
movement data, suggesting that participants believe that
watch and warning information improves their understand-
ing of the forecast path.

3.9.3. Color scale

Participants also found the use of a gradient color palette
problematic when conveying categories of tropical cyclones
(i.e., tropical storm vs. hurricane) and alerts (i.e., watches
and warnings). Specifically, they disliked the use of the
sequential, warm palette ranging from yellow to red in
the RDNA visualization. Few participants (5) observed that
the color palette did not provide sufficient discrimination
between a tropical storm warning and a hurricane watch,
making it difficult to see the differences. As a result, more
participants (7) preferred the COU’s use of distinct colors to
convey categories of tropical cyclones and alerts.
Participants did not identify the color scale used in RDNB
as problematic, possibly because different colors were used
to convey the tropical cyclone categories, while separate
maps conveyed each alert type.

3.9.4. Layout

Eleven participants expressed dissatisfaction with RDNB,
indicating that the visualization had higher search demands:
information hierarchy was inadequate; related information
was not grouped; and more processing was required for the
additional data elements. The participants felt the layout was
unclear, with design elements sequenced without apparent
reason, making the message difficult to discern.
Furthermore, the arrangement of the elements in RDNB
placed related items distally. For example, the “how to read
map” component was placed in between the advisory infor-
mation and the legend for the forecast wind speed.
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Participants explained that because the advisory information
and forecast legend were related, they should be grouped
together. Five participants also noted that RDNB had twice
as many design elements to process than the other two visu-
alizations, increasing the complexity of the visual representa-
tion of the information.

3.9.5. Legend

A common criticism of the COU was that it did not provide
precise labeling of storm categories. The map has icons rep-
resenting the category of tropical cyclones (e.g., D, S, H, M),
but the legend does not provide a textual description of the
meaning of the letters (e.g, M=Major Hurricane).
Regarding RDNA and RDNB, participants appreciated that
the legend provided matching and contextually relevant
information about tropical cyclone intensity.

4. Discussion

The cone of uncertainty is one of the most widely used hur-
ricane forecast graphics, but research shows that the general
public often misinterprets the information conveyed, inter-
fering with timely preparation and overall decision-making.
To better communicate hurricane risk information, alterna-
tive visualizations should be considered. In this study, we
explored how visualization design elements and users’
numerical and graphical literacy influence interpretations of
hurricane forecast information.

We found that participants had significantly better com-
prehension scores when using the COU graphic compared
with RDNA. RDNA differed from the COU in four ways:
(1) colors for watches and warnings were changed to a
sequential-qualitative color palette to better align with repre-
sentations of tiered, binary variables, (2) contextual explana-
tions of map abbreviations were added to the legend at the
bottom of the map to provide situationally relevant informa-
tion, (3) expanded instructions were placed at the top of the
map to provide additional informational, and (4) diffused
gray shading with a fuzzy boundary was used to represent
the forecast and associated uncertainty to alleviate the com-
mon misinterpretation of safety in areas outside of the
COU’s cone. However, eye movement data showed that par-
ticipants rarely attended to the legend, expanded instruc-
tions in RDNA resulted in longer dwell times, which is to
be expected, and in post-study interviews, participants indi-
cated that the RDNA cone was difficult to see because the
diffused gray shading was too light. The use of transparency
and fuzzy boundaries may have resulted in the cone blend-
ing in with the background map, affecting user comprehen-
sion. Therefore, the use of transparency and boundary
fuzziness when encoding data uncertainty in hurricane fore-
cast graphics is not recommended. However, our findings
do not provide direct evidence of whether sequential-quali-
tative color palettes, contextual legends, and expanded
instructions contribute to the overall understanding of hurri-
cane forecast products. Further investigations are needed to
determine if a sequential-qualitative color scheme, in

particular, representing the two alert levels by varying color
hue (watches and warnings) and the two intensities of trop-
ical cyclones by varying color value (tropical storm, hurri-
cane), is effective for weather forecast products.
Furthermore, we found that participants’ comprehension of
hurricane forecast information depended less on visualiza-
tion design and more on subjective numeracy, subjective
graphicacy, and tropical cyclone characteristics that influ-
ence cone shapes, such as translational speed and changes
in heading.

We found two significant interaction effects. One was an
interaction effect between TC and numeracy. That is, when
estimating tropical cyclone Sandy’s path, participants who
had low levels of numeracy had lower comprehension scores
than those who had high levels of numeracy. Hurricane
Sandy differed from the other tropical cyclones in the set, in
that its cone depicted an S-pattern, the watches and warn-
ings issued were outside the cone’s boundary (advisory 19),
and it began as a tropical cyclone and then transitioned to a
post-tropical cyclone, as conveyed in the legend, just before
landfall. Sandy’s S-shaped cone reflected its shift westward
toward land rather than the more typical turn to the north-
east over the north Atlantic. Because the cone did not over-
lap with the watches and warnings, we observed that
participants incorporated watch and warning depictions into
their path estimates rather than relying on the specific path
attributes. Furthermore, the term post-tropical may have
confused some participants given that there is no explan-
ation of what the term means in the graphic. Participants
may not have understood that a post-tropical cyclone can
still produce sustained winds of hurricane and tropical
storm force. The second significant interaction effect was
between TC and graphicacy on comprehension scores. That
is, when estimating tropical cyclone Florence’s path, partici-
pants who had low levels of graphicacy had lower compre-
hension scores compared to those who had high levels of
graphicacy. Hurricane Florence had the greatest rate of
change in translational speed of all tropical cyclones in the
set, decreasing from a peak of 14.9 to 2.6kt in just 3 days.
These findings further support the evidence that cone shape
impacts comprehension. In addition to a cone shape, how-
ever, there may be other characteristics that also impact
comprehension that remain unknown at this time. Overall,
our results indicate that numeracy, graphicacy, and tropical
cyclone characteristics, in combination, influence interpreta-
tions of the hurricane forecast track.

We observed that familiarity is a driver for preference,
confirming previous studies (Bornstein, 1989) reporting that
repeated exposure to a stimulus increases the likelihood of
participants choosing that stimulus over others. Regarding
completion time, we found that participants with lower sub-
jective numeracy and graphicacy took longer to complete
path estimation tasks with the alternative designs than with
the one they are familiar with (i.e., the COU), but this extra
processing was not needed for participants with higher sub-
jective numeracy and graphicacy scores. These findings sug-
gest that users with higher numeracy and graphicacy may be
more efficient when reading alternative displays.



Across the visualization designs and tropical cyclones,
regardless of the design modifications, participants had sig-
nificantly higher numbers of fixations, longer fixation dura-
tions, and longer dwell times on the cone element compared
to all other AOIs. We also observed that elements placed at
the top of the display received greater visual attention, in
that the instructions, which are placed at the top, for COU
and RDNA, had the second highest numbers of fixations,
fixation durations, and dwell times. When the instructions
were placed in another location, as in RDNB, the AOI
received less visual attention. Eye movement data offered
evidence that our design modifications did not alter visual
attention patterns. Interestingly, how long and how many
times participants looked at different aspects of the visual-
ization did not influence their estimates of the forecast path.

A significant design change for RDNB was separating
watch and warning information from the forecast track to
alleviate information clutter and facilitate understanding.
However, this design modification did not improve under-
standing. We also found that participants relied on watch
and warning information when making decisions about fore-
cast path as evidenced by the eye movement data, suggesting
a misinterpretation, as watches and warnings do not convey
track information, only wind risk, and only for the coast.
This misinterpretation usually does not affect users’ judg-
ment, as the information tends to be congruent, but it does
suggest that participants use impact-based, rather than just
track-based information, in making predictions about hurri-
cane track. We further found that comprehension of the
forecast track did not improve in response to changes in
cone style (e.g., bounded vs. fuzzy border), use of a sequen-
tial-qualitative color palette, expanded instructions, and
inclusion of contextual legends. Our findings, therefore, do
not support efforts relying solely on visual design modifica-
tions and suggest that the users’ interpretive difficulties are
inherent to the display type and even the informa-
tion offered.

5. Conclusion

Hurricane forecast graphics have the challenging task of
communicating both complex information about hazards
and spatio-temporal uncertainty. Unfortunately, the general
public often misinterprets forecast graphics. Providing effect-
ive visualizations is critical for successful messaging of hurri-
cane risks. This study examined the influence of design
modifications on comprehension and completion time when
participants estimated the forecast path of nine tropical
cyclones. We supplemented this analysis with eye-tracking
measures to examine the areas of the visualizations with the
greatest fixation counts, longest fixation durations, and
greatest dwell times. Overall, the design modifications
appeared to have limited influence on comprehension and
response time. Furthermore, we found that non-experts with
lower levels of graphicacy or numeracy may have greater
difficulty in understanding path uncertainty in forecasts
depicting changes in translational speed or multiple changes
in heading. We also found that visual attention in this
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complex decision task was mostly focused on the more sali-
ent information (e.g., the cone), while other information was
often ignored. Although the participants preferred the COU,
familiarity did not mean that users could correctly interpret
the information provided in that graphic. Marginally alter-
native designs were not found to be more effective. Our
study aligns with the literature showing that users have trou-
ble understanding forecast uncertainty and adds to this lit-
erature in three important ways: (1) we found that
confusion extends beyond the cone, and applies to other
design elements; (2) we show, however, that users do rely
on other salient aspects of the graphic in addition to the
cone; and (3) we found that user characteristics, such as
graphicacy and numeracy, also contribute to misinterpreta-
tions for specific storm characteristics. This study provides
evidence that future design efforts should be focused on
completely reimagined visualizations for communicating
tropical cyclone forecast paths. Furthermore, based on the
findings from this study and our previous work delineating
non-experts’ unmet needs for concrete, actionable informa-
tion, we recommend that future design efforts be focused on
visualizations that emphasize hazards and risk, rather than
just the possible path of the storm center.
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