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[1] The purpose of this paper is to analyze the life cycle of tropical cyclones in terms
of a K-Vmax diagram. Such a diagram summarizes the time evolution of the integrated
kinetic energy K and the maximum tangential wind Vmax, which respectively measure
vortex size and intensity. A typical life cycle consists of an incipient stage in which K
and Vmax slowly increase until Vmax<25 m s21, a deepening stage in which K and Vmax

increase more rapidly until Vmax<60 m s21, and finally a mature stage in which K
continues to grow at approximately the same rate while Vmax remains fixed or even
decreases. This typical life cycle can be diagnostically analyzed using a theoretical
argument that is based on the balanced vortex model and, in particular, on the
associated geopotential tendency equation. This is a second order partial differential
equation containing the diabatic forcing and, under idealized conditions, two spatially
varying coefficients: the static stability and the inertial stability, whose ratio
determines the local Rossby length ,. Thus, the balanced azimuthal wind and
temperature tendencies in a tropical vortex depend not only on the diabatic forcing,
but also on the spatial distribution of ,. Under the simplifying assumption that the
diabatic heating and the associated response are confined to the first internal vertical
mode, the geopotential tendency equation reduces to a radial structure equation,
which can be solved numerically. These solutions illustrate how the vortex response to
diabatic heating depends on whether this heating lies in the large Rossby length region
outside the radius of maximum wind or in the small Rossby length region inside the
radius of maximum wind. Tangential wind tendencies are found to be hypersensitive
to the location of the diabatic heating relative to the small Rossby length region in the
vortex core.
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1. Introduction

[2] The first success in modeling the life cycle of
tropical cyclones was obtained by Ooyama [1969], using
a model of maximum simplification: axisymmetric,
hydrostatic, gradient balanced, with only three layers
and with moisture predicted only in the lowest layer.
Despite its simplicity, the results of numerical integra-
tions showed that the model was capable of simulating
typical tropical cyclone life cycles with a remarkable
degree of reality. The results of a typical case are sum-
marized in Figure 1, which shows the time evolution of
the maximum tangential wind, the radius of maximum

tangential wind, the radius of hurricane force wind (64
kt), the radius of gale force wind (34 kt), the radius of
maximum upward Ekman pumping at the top of the
boundary layer, and the minimum surface pressure. The
storm intensifies from 10 m s21 to 58 m s21 in 134 h, after
which the maximum wind slowly decreases while the size
of the storm continues to grow, as indicated by the
outward movement of the radius of gale force winds
and the radius of hurricane force winds. The growth in
storm size is also clearly illustrated in Figure 2, which
depicts the time evolution of the integrated kinetic energy
inside radii of 100, 200, 500, and 1000 km. Note that,
after the peak wind speed at 134 h, there is continued
rapid growth in the total kinetic energy inside 1000 km.
After 100 h, less than half of the integrated kinetic energy
comes from the region inside 200 km.

[3] Another way to summarize this idealized case is
with a K-Vmax diagram, i.e., a diagram in which the
ordinate is the integrated kinetic energy inside a radius
of 1000 km and the abscissa is the maximum tangential
wind. The time evolution of Ooyama’s case is shown by
the multi-colored curve in the K-Vmax diagram shown in
Figure 3. The life cycle has been broken into three stages:
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incipient (0–60 h), deepening (60–134 h), and mature
(134–216 h). As can be seen from Figure 3, there is an
obvious inadequacy to a single scale based on Vmax only.
For example, the simulated storm has Vmax<44 m s21

(Category 2 on the Saffir-Simpson scale) at both t<96 h
and t<216 h, but these two times have kinetic energies
differing by approximately a factor of six. At t<96 h the
simulated storm is small and in the deepening stage, while
at t<216 h it is large and in the mature stage. This
inadequacy of the Saffir-Simpson scale has led to propo-
sals by Powell and Reinhold [2007] and by Maclay et al.
[2008] for a two-parameter storm classification based on
maximum wind and integrated kinetic energy.

[4] Although the multi-colored curve in Figure 3
shows a typical tropical cyclone life cycle in the K-
Vmax plane, considerable variability from this curve
can occur in real and model cyclones. For example,
Zehr and Knaff [2007] have shown observationally that
hurricane size, as given by the average radius of gale-
force winds (see the approximate ordinate scale on the
right side of Figure 3), is approximately 251 km when
the storm is at maximum intensity. Although this agrees
fairly well with the multi-colored curve in Figure 3, Zehr
and Knaff point out the extremely large variability in
this value, which ranges from 93 to 427 km in their data
set. Further variations from the multi-colored curve in
Figure 3 occur in annular hurricanes [Knaff et al., 2003a,
2008], which tend to maintain high values of Vmax while
K increases.

[5] Another type of variability occurs with small
intense hurricanes. For example, Hurricane Inez
(1966), described in detail by Hawkins and Imbembo
[1976], was an intense hurricane whose radii of gale force
and hurricane force winds near the time of peak intens-
ity were approximately half those of the typical case
shown in Figures 1–3. Even more extreme cases of small
intense typhoons occur in the western Pacific [e.g., see
Arakawa, 1952; Brand, 1972; Merrill, 1984; Weatherford
and Gray, 1988a, 1988b; and Harr et al., 1996]. A classic
example of a small intense storm is Cyclone Tracy,
which had gale force winds extending only 50 km from
its center when it struck Darwin, Australia in December
1974. Such behavior is indicated in the lower part of
Figure 3 with the label ‘‘Strong Dwarfs.’’ At the other

Figure 1. Time evolution of (top) the maximum tan-
gential wind, (middle) the radii of maximum wind,
hurricane force wind, gale force wind, and maximum
Ekman pumping, and (bottom) the central surface
pressure. From Ooyama [1969].

Figure 2. Time evolution of the total kinetic energy for
regions within radii of 100, 200, 500, and 1000 km. From
Ooyama [1969].
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extreme are the western Pacific’s mature supertyphoons,
which, as indicated in the upper-right part of Figure 3,
can simultaneously have large K and large Vmax. The
prototype of these storms is Super Typhoon Tip (1979),
as described by Dunnavan and Diercks [1980]. At its most
intense stage, Tip had winds of 85 m s21 and a radius of
hurricane force winds more than double that shown in
Figure 1, and an 1100 km radius of gale force winds, so its
K would be well off the upper edge of Figure 3. We have
indicated such storms in the upper-right part of Figure 3
with the label ‘‘Super Giants.’’ Finally, on the left side of
Figure 3 we have indicated a class of storms called ‘‘Weak
Giants,’’ which are tropical depressions or tropical
storms that, although never reaching hurricane intensity,
can become quite large and produce copious rainfall. The
nomenclature used in Figure 3 is modeled after the
Hertzsprung-Russell diagram, which is a scatterplot
showing the relationship of stars in terms of their abso-
lute magnitude and effective temperature [Rosenberg,
1910]. On the H-R diagram, one finds a main sequence
region (our multi-colored curve), as well as hot white
dwarfs (our strong dwarfs), cool supergiants (our weak
giants), and hot supergiants (our super giants) that
highlight excursions from the main sequence.

[6] There are two important phenomena that can
cause variability from the typical ‘‘main sequence’’ curve
in Figure 3. The first is potential vorticity mixing
[Schubert et al., 1999; Kossin and Eastin, 2001;
Montgomery et al., 2002; Hendricks et al., 2009;
Hendricks and Schubert, 2010]. This process, which is

often associated with polygonal eyewalls, tends to
reduce Vmax but leave K relatively unchanged. A second
source of variability of curves in the K-Vmax plane is the
concentric eyewall cycle, a process in which intensifica-
tion is interrupted by the formation of an outer eyewall,
the decay of the inner eyewall, and finally the contrac-
tion of the outer eyewall [Willoughby et al., 1982; Houze
et al., 2007; Rozoff et al., 2008; Terwey and Montgomery,
2008; Didlake and Houze, 2011]. The K-Vmax signature
of an eyewall cycle for an intense tropical cyclone is
shown schematically by the dotted curve near the center
of Figure 3, which resembles a hairpin turn on the road
to maturity.

[7] An interesting feature in Figure 1 (middle) is that
the radius of maximum Ekman pumping (and hence the
region of strong diabatic heating) always lies outside the
radius of maximum tangential wind, but during the
period of rapid increase in Vmax, the region of diabatic
heating moves inward toward the high inertial stability
region that lies just inside the radius of maximum wind.
In contrast, during the later mature period of increasing
K and slowly decreasing Vmax (i.e., after 132 h), the
region of diabatic heating shifts outward, away from the
region of largest inertial stability. This general behavior
is consistent with the observational results of Corbosiero
et al. [2005], who performed a detailed analysis of
Hurricane Elena (1985) during a 28-h period when it
was well observed by both ground-based radar and
aircraft. Their results indicate that Elena’s period of most
rapid intensification occurred when intense convection

Figure 3. The multi-colored curve shows the K-Vmax time evolution of the model vortex shown in Figures 1 and 2.
The incipient, deepening, and mature stages are indicated respectively by green, red, and blue. Time marks are every
12 h. Labels across the top of the figure stand for tropical depression (TD), tropical storm (TS), and the five Saffir-
Simpson categories. Excursions off this ‘‘main sequence’’ can be caused by potential vorticity mixing and concentric
eyewall cycles (the latter of which is shown schematically as a sudden decrease in Vmax as the inner eyewall dies).
Three other types of time evolution occur in small, intense storms labeled here as ‘‘Strong Dwarfs,’’ in large, mature
storms labeled here as ‘‘Super Giants,’’ and in large tropical depressions or tropical storms that never reach
hurricane intensity, labeled here as ‘‘Weak Giants.’’ For rough quantitative interpretation, the ordinate is also
labeled (on the right) in terms of the radius of gale-force winds.
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was located close to the region of high inertial stability.
Sections 3 and 4 provide further discussion of this
important aspect of tropical cyclone dynamics.

[8] The results shown in Figures 1–3 were produced
by a three layer model that uses the gradient balance
approximation in all three layers. The use of gradient
balance in the calculation of the boundary layer inflow is
probably the weakest assumption in the model. When
the boundary layer radial inflow is strong, the neglect of
the radial advection term u(hu/hr) is not justifiable. In a
companion study, Ooyama [1968] relaxed the assump-
tion of gradient balance in the boundary layer in order
to produce a more accurate radial distribution of
Ekman pumping. More detailed discussions of the role
of the u(hu/hr) term in hurricane boundary layer
dynamics can be found in Shapiro [1983], Smith and
Vogl [2008], Smith and Montgomery [2008], Smith et al.
[2009], Bui et al. [2009], Kepert [2010a, 2010b], and G. J.
Williams et al. (Shock-like structures in the tropical
cyclone boundary layer, submitted to Journal of
Advances in Modeling Earth Systems, 2012). Figures 4
and 5 show how the results of Figure 1 are modified
when this more accurate boundary layer formulation is
incorporated. With the inclusion of the u(hu/hr) term in
the boundary layer radial momentum equation, the
peak Ekman pumping lies at r<16 km, i.e., on the inside
edge of the eyewall rather than at r<57 km, on the
outside edge of the eyewall (Figure 5b). This places the
diabatic heating closer to the region of high inertial
stability so that the storm’s Vmax increases more rapidly
(see Figure 4a) and the integrated kinetic energy
increases more slowly. These results are consistent with
the notion that evolution curves on a K-Vmax diagram
depend crucially on the spatial proximity of the max-
imum values of inertial stability and diabatic heating.

[9] The purpose of the present paper is to use a simple
diagnostic tool derived from the balanced vortex model
to show how the relative radial positioning of high
inertial stability and strong diabatic heating determines
how a storm evolves in the K-Vmax plane. The simple
diagnostic tool is developed in section 2, and then applied
to a 30 m s21 vortex in section 3 and to vortices of various
strengths in section 4. Some concluding remarks about
hurricane intensity forecasting are given in section 5.

2. Balanced Vortex Model

[10] We consider inviscid, axisymmetric, quasi-static,
gradient-balanced motions of a stratified, compressible
atmosphere on an f-plane. As the vertical coordinate we
use z5H ln(p0/p), where H5RT0/g, with p0 and T0

denoting constant reference values of pressure and
temperature. The governing equations for the balanced
vortex model are

f z
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where u and v are the radial and tangential components

of velocity, w is the ‘log-pressure vertical velocity’, w is

the geopotential, f is the constant Coriolis parameter,

Figure 4. Time evolution of (a) the maximum tangen-
tial wind, (b) the radii of maximum wind and hurricane
force wind, and (c) the central surface pressure. Dashed
lines are for Model I, which assumes gradient balance in
all three model layers. Solid lines are for Model II, which
includes the u(hu/hr) term in boundary layer radial
momentum equation. Note that the dashed curves are
identical to the curves shown in Figure 1. From Ooyama
[1968].
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and Q is the diabatic heating. The total energy principle

associated with the governing equations (1)–(5) is

d

dt

ð ð
1

2
v2zcpT

� �
e{z=H rdrdz

~

ð ð
Qe{z=H rdrdz:

ð6Þ

Because of the gradient balance assumption (1), the

radial velocity component does not appear in (6).
[11] Equations (1)–(5) constitute a system of five

equations in the six unknowns u,v,w,w,T,Q, so obviously
an additional ‘‘parameterization’’ relating Q to the other
unknowns is required for closure. However, as is appar-
ent from the discussion in section 1, the addition of a
parameterization relation for Q would require incorp-
oration of boundary layer dynamics, since the boundary
layer radial inflow is crucial in determining the location
and strength of eyewall convection. In order to keep the
theoretical argument as simple as possible, we attempt
to see what conclusions can be drawn about the relation-
ships between the vortex structure, the temperature and
tangential wind tendencies, and the diabatic heating,
without making use of such a comparatively uncertain
parameterization relation for Q.

[12] As a hurricane evolves, the spatial distributions of
the static stability, baroclinicity, and inertial stability
change. The changes in the inertial stability can be par-
ticularly large, with important implications for the spatial

distribution of tendencies of the wind and mass fields. To
isolate the important role of changes in the inertial
stability, we seek solutions of (1)–(5) under the assumption
that the baroclinic terms w(hv/hz) and u(hT/hr) can be
neglected. Near the vortex core of a hurricane the bar-
oclinic terms do play an important role in producing an
outward tilt to the eyewall updraft [Pendergrass and
Willoughby, 2009; Schubert and McNoldy, 2010], so the
present analysis will not capture this effect. However, an
important advantage of the approach followed here is
that it leads to insight about the role of vorticity skirts
using very simple mathematical methods. Thus,
neglecting the baroclinic terms, we now multiply the
thermodynamic equation by g/T0 and the tangential
wind equation by f+(2v/r), and then make use of the
gradient and hydrostatic relations to obtain

Lwt

Lz
zN2w~
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cpT0
Q, ð7Þ
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where wt5hw/ht denotes the geopotential tendency, and

where the static stability and the inertial stability are

given by
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In the following analysis we shall consider N2 to be a

constant and f̂f 2 to be a function of r only.
[13] We can now regard (4), (7), and (8) as a system in

u,w, wt. One way of proceeding from (7) and (8) is to
eliminate wt to obtain an equation for the transverse
circulation [e.g., Shapiro and Willoughby, 1982; Schubert
and Hack, 1982]. The solution of this transverse circula-
tion equation yields the radial and vertical velocity
components, which can then be substituted into the
azimuthal wind and thermodynamic equations to obtain
the tendencies of v and T. A more direct route to the
tendencies is obtained by using the continuity equation
to eliminate u and w between (7) and (8), thereby
obtaining the tendency equation

N2 L
rLr

r
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Lwt
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1
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Equation (11) is a second order partial differential

equation for wt. To obtain boundary conditions for
(11) we assume that Q and w vanish along the top and

bottom boundaries, so that (7) yields

Figure 5. (a) The radial distribution of v0, the azi-
muthal wind in the boundary layer, and v1, the azi-
muthal wind in the lower main layer for Model I (dashed
line) and Model II (solid lines). (b) The radial distri-
bution of w, the vertical velocity at the top of the Ekman
layer, for Model I (dashed) and Model II (solid). All
curves are for t5146 hours. From Ooyama [1968].

(6)

(11)
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Lwt

Lz
~0 at z~0,zT : ð12Þ

Since u vanishes along the axis of symmetry and ruR0 as

rR‘, (8) yields

Lwt

Lr
~0 at r~0, and rwt?0 as r??: ð13Þ

Here we consider only vortices with f̂f Nw0 everywhere,

which ensures that (11)–(13) is an elliptic problem.
[14] We now solve (11)–(13) via separation of vari-

ables, assuming that Q(r,z) has the vertical structure
given below in the top line of (14). It is easily shown that
Tt(r,z) and w(r,z) have the same vertical structure and
that wt(r,z), vt(r,z), and u(r,z) have the vertical structure
given in (15). The two vertical structure functions appear-
ing in (14) and (15) are plotted in Figure 6. The blue curve
is the vertical structure function exp[z/(2H)]sin(pz/zT),
which reaches its maximum at z5zm, where zm is given
by pzm/zT5p+tan21(–2pH/zT). For zT515 km and
H5RT0/g58.718 km, the formula for zm yields zm<8.776
km, which results in a maximum value of 1.596 for the
vertical structure function. Then, using the separable forms
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we can show that the hydrostatic, gradient wind, tangential
wind, and thermodynamic equations respectively imply
that
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Substituting (14) and (15) into (11) we find that the
ordinary differential equation for the radial structure of
the temperature tendency is given by the top entry in (22),
where

‘(r)~
N

f̂f (r)

p2

z2
T

z
1

4H2

� �{1=2

~
f

f̂f (r)
‘0 ð20Þ

is the Rossby length. As rR‘, f̂f (r)?f and ,(r)R,0, the

constant far-field value which we shall assume is equal to

1000 km. One of the remarkable features of hurricanes is

the wide range of ,(r), which can shrink from this far-

field value of 1000 km to less than 10 km in the core.
[15] From the first entry in (13), the boundary con-

dition at r50 can be written as the second entry in (22).
Since our problem is to be solved numerically over a
finite domain, we need to replace the boundary condition
rT̂Tt?0 as rR‘ with an approximate far-field boundary
condition at some large radius r5b. In the far-field Q̂Q?0
and ,(r)R,0, so that the top line of (22) simplifies to

d2T̂Tt

dr2
z

dT̂Tt

rdr
{

1

‘2
0

T̂Tt~0 for large r: ð21Þ

The solution of (21) consists of a linear combination
of the zero order modified Bessel functions, i.e.,

T̂Tt(r)~AK0(r=‘0)zBI0(r=‘0), where A and B are con-
stants. Since I0(r/,0)R‘ as rR‘, we require B50, so that

T̂Tt(r)~AK0(r=‘0) for large r. The value of A depends on
the details of the solution in the inner region, but it can be

eliminated by noting that dT̂Tt=dr~{(A=‘0)K1(r=‘0), so

that, at r5b, dT̂Tt=dr and T̂Tt are related by the third line in
(22). In all the calculations shown here we have assumed
b51000 km and ,051000 km, so that the factor in the
large parentheses on the right hand side of the third line
in (22) is approximately (700 km21).

[16] To summarize, the second order differential
equation and the appropriate boundary conditions for
our problem are

Figure 6. Vertical structure functions appearing in (14)
and (15). The blue curve is exp[z/2H]sin(pz/zT), the
vertical structure function for Q(r,z),Tt(r,z),w(r,z). The
red curve is exp[z/(2H)]{cos(pz/zT)-[zT/(2pH)]sin(pz/zT)},
the vertical structure function for wt(r,z),vt(r,z),u(r,z). The
blue curve reaches a maximum value of approximately
1.596 at z5zm<8.776 km.

(15)
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Once T̂Tt(r) is found from (22), the original fields Tt(r,z),
vt(r,z), wt(r,z), u(r,z), and w(r,z) can be recovered from (14)–
(19). Solutions of (22) reveal how the nonlocal relationship

between the diabatic heating Q̂Q(r) and the temperature

tendency T̂Tt(r) is modulated by the vortex structure
through the radial distribution of the Rossby length ,(r).
Understanding the nonlocal behavior of the solutions of
(22) is a crucial part of an overall understanding of the
rapid intensification process. Vigh and Schubert [2009] have
solved (22) analytically for the special case in which ,(r) is
piecewise constant over two regions––the core and the far-

field. They have shown that, when Q̂Q(r) is localized in a

region where ,(r) is small, it is possible for T̂Tt(r) to be large
and localized in the same region because the small values of
,(r) reduce the magnitude of the second derivative term

even though jd2T̂Tt=dr2j is large. In the present study we
consider radial profiles of ,(r) that are more complicated,
i.e., profiles that have low values of ,(r) in the core, large
values of ,(r) in the far-field, but a more gradual transition
due to the presence of a ‘‘vorticity skirt’’ outside the radius
of maximum wind. Because of these more complicated
radial profiles of ,(r), we shall solve (22) numerically.

[17] If the differential equation in the top line of (22)
were solved on an infinite domain with the boundary
condition rT̂Tt?0 as rR‘, then integration of this dif-
ferential equation would yield the integral relationð?

0

T̂Tt rdr~

ð?
0

Q̂Q

cp

rdr, ð23Þ

which states that the area-integrated temperature tendency
is equal to the area-integrated diabatic heating, even

though Q̂Q(r) can be large and localized while T̂Tt(r) can
be small and spread over a wide area. What is the analogue
of (23) for our finite domain? Integration of the differential
equation over the computational domain 0#r#b, with use
of the boundary conditions in (22), yields

ðb
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T̂Tt rdrz
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where we have assumed that b is large enough that

,(b)<,0. Although our numerical solution for T̂Tt(r) is

obtained in the region 0#r#b, suppose we extend it to

infinity by
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Since the right hand side of (26) is equal to the second term

in (24), and since we have assumed that Q̂Q~0 for b#r#‘,

we can simplify (24) toðb
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T̂Tt rdrz
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cp
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which is equivalent to the infinite domain result (23). Thus,

in the sense that the finite domain result is extended to

infinity according to (25), the integral relation (23) is

preserved.

3. Effect of a Vorticity Skirt on the Intensification
Rate

[18] We now consider some sample solutions of (22).
In order to specify the ,(r) factor in (22), we consider the
vortex

v(r)~
C

2pr
1{ exp {

r2

a2

� �� �
, ð28Þ

where C and a are constants. The maximum wind is

vmax<0.6382C/(2pa), which occurs at rmax<1.121a.

Since 2prvRC as rR‘, the constant C represents the

circulation at large radii. The relative vorticity field

associated with (28) is given by

f(r)~
d(rv)

rdr
~

C

pa2
exp {

r2

a2

� �
, ð29Þ

so the constant a is the e-folding radius of the vorticity

distribution. Using (28) and (29) in (10), we obtain

f̂f 2(r)~ f z
C

pr2
1{ exp {

r2

a2

� �� �� 	

: f z
C

pa2
exp {

r2

a2

� �� 	
,

ð30Þ

from which ,(r) can be computed using (20). For the

results presented in this section we have chosen a526.76

km and C57.9056106 m2s21, which corresponds to

rmax<30 km and vmax<30 m s21. Figure 7 shows v(r),

f(r), and ,(r) profiles for this vortex. Note that the

maximum vorticity is approximately 70f (for f5

561025 s21) and that the Rossby length is less than 20

km in the vortex core but begins to increase rapidly

toward its far-field value outside a radius of 50 km.

(26)
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[19] To specify the Q̂Q(r) term in (22) we assume that
the diabatic heating has the form of an annular ring
with smooth edges. A plausible explanation for the
diabatic heating taking the form of an annular ring
has been provided by Eliassen [1971] and Eliassen and
Lystad [1977], who showed that the Ekman pumping
at the top of a turbulent boundary layer under an
axisymmetric vortex vanishes at the vortex center and
reaches a maximum at a certain distance from the
vortex center [see also Yamasaki, 1977; Emanuel,

1997; Smith and Vogl, 2008; Smith and Montgomery,
2008; Kepert, 2010a, 2010b]. This result, which arises
from the use of a stress condition at the top of the thin
surface Prandtl layer, is qualitatively different from
the more radially uniform Ekman pumping at the top
of a laminar boundary layer that uses a no-slip
condition at the surface. Although our dynamical
model (1)–(5) does not explicitly contain Ekman layer
effects, we use these conceptual notions to justify the
specification

Figure 7. Radial profiles of (a) tangential wind v(r), (b) relative vorticity f(r), and (c) Rossby length ,(r) for the
Gaussian vortex defined by (28), with the constants C and a chosen such that the wind maximum is 30 m s21 at a
radius of 30 km.
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Q̂Q(r)~Q̂Qew

0 0ƒrƒr1,

S
r2{r

r2{r1

� �
r1ƒrƒr2,

1 r2ƒrƒr3,

S
r{r3

r4{r3

� �
r3ƒrƒr4,

0 r4ƒrv?,

8>>>>>>>>><
>>>>>>>>>:

ð31Þ

where S(s)51-3s2+2s3 is the cubic interpolating function

satisfying S(0)51, S(1)50, S9(0)5S9(1)50, and r1,r2,r3,r4

are specified constants. The eyewall diabatic heating,

denoted by Q̂Qew, is determined from r1,r2,r3,r4 by imposing

the constraint that the total diabatic heating is fixed, i.e.,

2p

ðr4

0

Q̂Q(r)

cp

rdr~(3:2 K day{1):p(250 km)2: ð32Þ

Fixing the total diabatic heating is essentially the same as

fixing the total rainfall or fixing the diabatic generation of

total energy, as can be seen from (6). For further discus-

sion of this normalization technique, see Schubert and

Hack [1982], especially their Table 1, which is based on

the observational analysis of Gray [1981]. Substituting

(31) into (32), and performing the integration, we obtain

Q̂Qew

cp

~G: 3:2 K day{1

 �

, ð33Þ

where the dimensionless geometrical factor G is given by

G~
10(250 km)2

(3r2
3z4r3r4z3r2

4){(3r2
1z4r1r2z3r2

2)
: ð34Þ

Note that G51 in the special case r15r250 and

r35r45250 km, in which case the peak value of the

diabatic heating occurs at z58.776 km (see Figure 6)

and has the value Q/cp5(1.596)?(3.2 K day21)55.107 K

day21, a value typical of western Pacific convective cloud

cluster regions [Yanai et al., 1973]. For general eyewall

patterns of heating, we can compute Q̂Qew from (33) and

(34) once r1,r2,r3,r4 are specified. Plots of Q̂Q(r)=cp, com-

puted using the parameters listed in Table 1, are shown in

Figure 8. The cases can be described as follows. In H1 the

heating lies well outside the radius of maximum wind and

at the outer edge of the vorticity skirt. In H2 the heating

lies just outside the radius of maximum wind and is

partially inside the vorticity skirt. In H3 the heating

extends across the radius of maximum wind and thus lies

in a region of rapidly changing inertial stability and

Rossby length. In H4 the heating is confined inside the

radius of maximum wind, so that all the heating is in a

region of high inertial stability and small Rossby length.

Note that the constraint (32), together with the assumed

vertical structure of Q(r,z) given by (14), means that the

total energy generation given by the right hand side of (6)

is the same for each heating profile shown in Figure 8.

However, the fraction of the total energy generation that

is partitioned to kinetic energy generation is dependent on

the position of the diabatic heating relative to the inertial

stability. An ‘‘energetic efficiency’’ interpretation of this

effect has been given by Hack and Schubert [1986].
[20] The results of the first three heating profiles H1,

H2, H3 are shown in Figures 9–11 respectively. Figures
9a–11a show the tangential wind v(r) in blue, the relative
vorticity f(r) in red, and the diabatic heating Q̂Q(r) in gray
shading, Figures 9b–11b show the temperature tendency
T̂Tt(r), Figures 9c–11c show the geopotential tendency
ŵwt(r), Figures 9d–11d show the radial flow ûu(r) in blue
and the vertical velocity ŵw(r) in red, Figure 9e–11e show
the tangential wind v(r) in blue, the surface tangential
wind tendency vt(r,0) in red, and the resulting surface
tangential wind v(r)+vt(r,0)?6 h in green, and finally
Figures 9f–11f show the vorticity f(r) in blue, the surface
vorticity tendency ft(r,0) in red, and the resulting surface
vorticity f(r)+ft(r,0)?6 h in green. In all three cases the
vertical velocity is upward in the diabatically heated
region and weakly downward outside this region. The
radial flow is weak and outward near the inside edge of
the heating, while it is stronger and inward near the
outside edge of the heating. The radius where u50 is
not near the center of the diabatically forced region but
rather lies very near the inner edge of that region. In other
words, the radial flow is inward over nearly the entire
diabatically forced region, so that v̂vt~{(f zf)ûuw0 over
nearly the entire diabatically forced region. Because of
the radial variation of f+f, the tangential wind tendency
v̂vt(r) does not peak at the same radius where the inflow

Table 1. Bounding Radii r1,r2,r3,r4 and the Factor G for the

Four Q̂Q(r)=cp Profiles Shown in Figure 8

r1 r2 r3 r4

Case (km) (km) (km) (km) G

H1 40 45 55 60 41.67
H2 30 35 45 50 52.08
H3 20 25 35 40 69.44
H4 10 15 25 30 104.17 Figure 8. Radial profiles of diabatic heating Q̂Q(r)=cp

for the cases listed in Table 1.
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peaks, i.e., v̂vt(r) generally peaks closer to the center of the
heating. In all cases the tendencies of temperature,
geopotential, and vorticity are maximized along the inner
edge of the heating profile. Case H1 (Figure 9) illustrates
the tendency for diabatic heating at the outer edge of the
vorticity skirt to increase the outer tangential winds while
having a minimal effect on the inner winds, corresponding
to the early mature stage in Figure 3. For case H2 (Figure
10), the heating is just outside the radius of maximum
wind, i.e., in the region of the vorticity skirt. This is more
efficient than case H1, with the tangential winds increas-
ing at a rate of approximately 1.1 m s21 h21, correspond-
ing to the developing stage in Figure 3. For case H3 an
intense response is seen (Figure 11). The tangential wind
tendency is approximately 3 m s21 h21, with the max-
imum located just inside the inflow maximum and just
outside the original radius of maximum wind. The vortex

expands slightly as it intensifies, and the vortex profile
inside the heating hollows [Shapiro and Willoughby, 1982;
Kossin and Eastin, 2001]. Note that the maximum intensi-
fication rates found by Zehr and Knaff [2007] for major
Atlantic hurricanes are in the range 1 to 2 m s21 h21, so
the tendency found in case H3 should be regarded as near
the upper limit of observed values.

[21] We have also calculated solutions for the case H4
(not shown). In this case the diabatic heating lies entirely
within the radius of maximum wind, where the vorticity
is largest and the local Rossby length is smallest. The
tangential wind tendencies in case H4 are so large (,9
m s21 h21) that they correspond to intensification rates
that have apparently never been observed. One inter-
pretation of this result is that certain physical processes
(e.g., boundary layer frictional effects) do not allow the
diabatic heating field to occur entirely within the radius

Figure 9. Changes in vortex structure for case H1, where the diabatic heating occurs well outside the radius of
maximum wind: (a) radial profiles of tangential wind v(r) in blue, relative vorticity f(r) in red, and (arbitrarily scaled)
diabatic heating Q̂Q(r) in gray shading; (b) radial profile of the temperature tendency T̂Tt(r); (c) radial profile of the
geopotential tendency ŵwt(r); (d) radial profile of the secondary circulation, with the radial wind ûu(r) in blue and the
vertical velocity ŵw(r) in red; (e) radial profile of the initial tangential wind v(r) in blue, the tangential wind tendency
v̂vt(r) in red with units of m s21 (6 h)21, and the surface tangential wind after six hours in green; (f) radial profile of the
initial relative vorticity f(r) in blue, the vorticity tendency ft(r,0) in red with units of 1023 s21 (6 h)21, and surface
relative vorticity after six hours in green. For reference, the (arbitrarily scaled) diabatic heating is also shown in
Figures 9e and 9f.
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of maximum wind for a vortex of this strength. In any
event, this example illustrates the hypersensitivity of the
intensification rate to the location of the diabatic heat-
ing relative to the high vorticity core. The results pre-
sented in this section are consistent with our previous
interpretation (see section 1) of Figure 1, i.e., the rapid
intensification period in the top and bottom panels of
Figure 1 occurs when the diabatic heating (indicated by
the r of max w) is closest to the radius of maximum
wind. In contrast, when the diabatic heating is well
outside the radius of maximum wind (as in Figure 9),
the maximum wind does not change but the outer winds
and therefore the integrated kinetic energy increase, as
occurs for 132#t#144 h in Figure 3.

4. Effect of Vorticity Skirts of Different Widths

[22] In the previous section we examined the balanced
response of a 30 m s21 vortex to diabatic heating in four
different annular regions. In this section we examine the
balanced response of five different vortices to a fixed
diabatic heating, which is again specified according to
(31)–(34), but now with (r1,r2,r3,r4)5(20,30,40,50) km.
Each vortex has a constant relative vorticity in the core

region and zero relative vorticity in the far-field, with a
smooth transition between the two regions. The math-
ematical form for the relative vorticity f5d(rv)/rdr is

f(r)~f0

1 0ƒrƒr̂r1,

S
r{r̂r1

r̂r2{r̂r1

� �
r̂r1ƒrƒr̂r2,

0 r̂r2ƒrv?,

8>><
>>: ð35Þ

where S(s) is the same cubic interpolating function used

previously, r̂r1,̂rr2 are specified constants, and the core

vorticity f0 is given by

f0~
10C

p 3r̂r2
1z4r̂r1r̂r2z3r̂r2

2


 � , ð36Þ

with C52p6106 m2s21 denoting the constant far-field

circulation. Figure 12b shows five such f(r) profiles, all

having r̂r1~20 km and with r̂r2~30,40,50,60,70 km. The

associated v(r) and ,(r) profiles are shown in Figures 12a

and 12c. For the blue and red cases, the vorticity skirt

and the associated small values of ,(r) extend part way

Figure 10. Same as Figure 9, but changes in vortex structure for case H2, where the diabatic heating occurs just
outside the radius of maximum wind.
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into the diabatically heated region, while for the cyan

and magenta cases, the vorticity skirt and small values

of ,(r) extend across and beyond the diabatically heated

region. Note that all the v(r) profiles are identical

outside a radius of 70 km (e.g., all have 10 m s21 winds

at 100 km), so that the average vorticity inside 70 km is

the same for all profiles.
[23] The tangential wind tendencies v̂vt(r) and the tem-

perature tendencies T̂Tt(r) are shown in Figures 12e and
12f. Note the general reversal of the ordering, i.e., the
smallest tendencies are found for the vortex with the
strongest tangential wind (37 m s21), while the largest
tendencies tend to be found for the vortex with the weakest
tangential wind (17 m s21). Figure 12d shows the surface
tangential winds after 6 h. These results demonstrate the
crucial importance of the location of the heating within the
vorticity skirt. Although the 37 m s21 vortex has high
inertial stability and small Rossby length in its core, its
potential for rapid development remains untapped
because most of the diabatic heating lies outside the
vorticity skirt in a region of larger Rossby lengths.

[24] The results displayed in Figure 12 illustrate the
simultaneous production of warm rings and U-shaped
wind profiles, where a U-shaped wind profile is defined as

a tangential wind profile in which the wind is weak in the
central part of the vortex but increases rapidly with
radius near the inner edge of the eyewall. For such
profiles the vorticity (and potential vorticity) is largest
in an annular ring, which means that the radial gradient
of vorticity has both signs and the Rayleigh necessary
condition for barotropic instability is satisfied (i.e., there
are counter-propagating Rossby waves). However, if the
annular ring is wide enough (e.g., the inner radius of the
ring is less than half the outer radius of the ring), the flow
tends to be exponentially stable [see Schubert et al., 1999,
Figures 1 and 2]. Exponential instability occurs for thin
rings, and, at finite amplitude, the instability is associated
with the inward mixing of high vorticity. How are U-
shaped wind profiles produced? The results of Figure 12d
indicate that U-shaped wind profiles tend to be produced
when part of the diabatic heating occurs just inside the
radius of maximum wind.

5. Concluding Remarks

[25] As a simple way to interpret the behavior of
tropical cyclones on a K-Vmax diagram we have derived
the idealized boundary value problem (22), which relates
the diabatic heating Q̂Q(r), the Rossby length ,(r), and the

Figure 11. Same as Figure 9, but changes in vortex structure for case H3, where the diabatic heating extends across
the radius of maximum wind.
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radial distribution of the mass field tendency T̂Tt(r) (or
equivalently, through gradient balance, the tangential
wind tendency v̂vt(r)). We have shown that one of the
crucial factors for rapid intensification of a tropical
cyclone is the occurrence of deep convection in a region
of small Rossby length. In particular, if the tropical
cyclone has a Gaussian-like vorticity structure, with
large vorticity (and small Rossby length) in the core
and decreasing vorticity (with increasing Rossby length)
in the skirt, then rapid intensification will not occur
unless some of the deep convection occurs well within
the skirt. Observations of the three-dimensional distri-
bution of vorticity in a tropical cyclone are very difficult
to obtain. This fact, along with the theoretical results
presented here, indicate that intensity forecasting is
fundamentally more difficult than track forecasting
because the intensification rate depends not just on the
average vorticity inside 100 km, but also on the details
of the vorticity distribution in this inner core region.

[26] Some of the issues we have explored here in the
context of the balanced vortex model have also been

recently explored in the context of full physics models,
especially the issue of the wide range in tropical cyclone
sizes. These studies have clarified the important role of
diabatic heating outside the eyewall and in the outer
spiral rainbands [Wang, 2009; Xu and Wang, 2010a;
Fudeyasu and Wang, 2011], the role of the initial vortex
size [Xu and Wang, 2010b], the role of eyewall tilt [Wang,
2008; Pendergrass and Willoughby, 2009], and the role of
environmental humidity, with dry environments leading
to smaller storms [Hill and Lackmann, 2009].

[27] K-Vmax diagrams such as the one shown in Figure 3
are presently finding practical use in operational weather
analysis and forecasting. They would also appear to be
useful to theoreticians and numerical modelers as a way to
summarize the life cycles of model tropical cyclones. For
example, they would be a convenient way to summarize
some of the variability found in ensemble forecasts of
tropical cyclone intensity.

[28] Although the inviscid, axisymmetric, balanced
model presented here (and further in Musgrave [2011])
is highly idealized, it is possible that the general concepts

Figure 12. (b) Five f(r) profiles computed from (35). All five profiles have r̂r1~20 km, and have r̂r2~30,40,50,60,70
km. (a, c) The associated v(r) and ,(r) profiles are shown. (e, f) The tendencies v̂vt(r) and T̂Tt(r) are shown, and (d) the
surface tangential wind after 6 hours is shown. The shaded region between 20 km and 50 km is the diabatically
heated region (arbitrarily scaled).
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developed from it can be useful in statistical hurricane
intensity prediction schemes such as those discussed by
DeMaria et al. [2001, 2005, 2007], Kaplan and DeMaria
[2003], Knaff et al. [2003b], Elsberry et al. [2007], and
Kaplan et al. [2010]. Research with this goal is currently
underway.

Appendix A: Solution of the Radial Structure
Equation Using Mathematica

[29] The problem (22) is solved using NDSolve, which
is the numerical differential equation solver in the
Mathematica software package. NDSolve can solve
single ordinary differential equations, sets of simultan-
eous ordinary differential equations, and some partial
differential equations, although not the elliptic equation
(11). NDSolve finds solutions iteratively, adapting its
step size to the accuracy and precision goals of the user.
In fact, a large number of options are available, through
which the user can control not only accuracy and
precision, but also such details as the particular discre-
tization method. For ordinary differential equations,
NDSolve by default uses the LSODE (Livermore
Solver for Ordinary Differential Equations) approach,
which switches between a non-stiff Adams method and
a stiff Gear backward difference method. For linear
boundary value problems, such as the one solved here,
NDSolve uses the Gel’fand-Lokutsiyevskii chasing
method, which is effectively a shooting method that uses
linearity to good advantage. The robustness of this
Mathematica tool for solving a wide variety of problems
is obtained at the cost of considerable complexity, with
the code for NDSolve and related functions totaling
approximately 1400 pages. To prepare (22) for solution
by NDSolve, we first put the differential equation in the
form

d2T̂Tt

dr2
z

1

r
z

d ln (‘2)

dr

� �
dT̂Tt

dr
{

1

‘2
T̂Tt~{

1

‘2

Q̂Q

cp

: ðA1Þ

Note that (A1) reduces to the zero order modified Bessel

equation in the far-field, where ,(r)R,0 and Q̂Q(r)?0,

which serves as the motivation for the r5b boundary

condition in (22). The domain for the radial structure

equation (A1) is ideally 0#r#b. However, because of the

singularity at r50, we have numerically solved (A1) on

the domain a#r#b, where we have chosen a to be very

small (10216 m). The Mathematica notebook used for the

calculations presented here is included on the journal

website as supplementary material1 to this article.
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