An Evaluation of Satellite-Derived **Atmospheric Motion Vector (AMV) Characteristics in Tropical Cyclones** Using TCI HDSS Dropsondes

Brian McNoldy¹, Christopher Velden², Sharanya Majumdar¹

1 - U. Miami/RSMAS 2 - UW/CIMSS

AMS 33rd Conf. on Hurricanes & Tropical Meteorology 16-20 April 2018, Ponte Vedra Beach FL

TCI AMV/Dropsonde Comparisons

- Project motivation: How good are AMVs in defining TC outflow, and can a mix of highresolution dropsondes with the AMVs better define the 4-D structure evolution?
- First, characterize AMVs by comparing to co-located (space and time) high-altitude HDSS dropsonde wind profiles
 - Focus on 4 TCI flights over Hurricane Patricia in Oct 2015 and two AMV datasets reprocessed by UW-CIMSS from GOES-East
 - Evaluate AMV accuracies and height assignments against dropsonde data averaged in layers of varying thicknesses, from 10 hPa to 300 hPa

Patricia 2015

 4 flights spanning 20 Oct – 23 Oct

 257 total dropsondes

 46 sondes released over Patricia on 23 Oct when intensity peaked at 185 kts, most intense western hemisphere TC on record

13B.4 AMS 33rd Conf. on Hurricanes & Tropical Meteorology

AMV: P < 300hPa, QI > 0.6

GOES13 WV

22 Oct 2015 1815 UTC

Hourly GOES-E Upper-level AMVs water vapor image +/- 30 min from image (data over land areas not plotted) Storm-centered range rings (500 & 1000 km) 20. **Dropsonde locations** (+/- 30 min from image) Patricia storm track 10 -110 -80 (C) 40 30 20 10 -10 -30 -50 -60 9 -20 -40 -70

AMV Match Selection Criteria

- Dunion & Velden (2002) evaluated low-level AMVs against dropsondes in 3 TCs during 1998 season... AMVs used if:
 - Within 60 minutes of dropsonde
 - Within **1**° of dropsonde
- Velden & Bedka (2009) evaluated AMVs against hi-res rawinsonde soundings from 3 ARM sites... AMVs used if:
 - Within 60 minutes of sonde
 - Within **50 km** of sonde
- Sears & Velden (2012) evaluated AMVs against G-V dropsondes from 26 flights over Invests/TCs during PREDICT... AMVs used if:
 - Within **30 minutes** of dropsonde
 - Within ¹/₂° **or 1**° of dropsonde (both tested)
 - AMV Quality Indicator (QI) ≥ 0.5
- This study evaluates AMVs against HDSS dropsondes from WB-57 flights over mature TC cores during TCI-15... Higher-density HDSS allows stricter match criteria:
 - Within 30 minutes or 15 minutes of dropsonde (both tested)
 - Within ¼° of dropsonde
 - AMV Quality Indicator (QI) ≥ 0.8

AMV-Dropsonde Match Statistics

- Following previous studies, routine statistics were calculated based on Nieman et al. (1997) and Velden and Bedka (2009)
 - Vector difference (VD)

•
$$(VD)_i = \sqrt{(U_i - U_s)^2 + (V_i - V_s)^2}$$

• Bias

•
$$(BIAS) = \frac{1}{N} \sum_{i=1}^{N} \left(\sqrt{U_i^2 + V_i^2} - \sqrt{U_S^2 + V_S^2} \right)$$

Mean vector difference (MVD)

$$(MVD) = \frac{1}{N} \sum_{i=1}^{N} (VD)_i$$

Vector standard deviation (VSD)

•
$$(VSD) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} [(VD)_i - (MVD)]^2}$$

- Vector root-mean-square error (VRMS)
 - $(VRMS) = \sqrt{(MVD)^2 + (VSD)^2}$
- Vector height--level of best fit (LBF)
 Level where AMV-sonde VD is minimized, within 100 hPa of AMV height

400

Routine (Real-Time) AMV datasets produced by CIMSS

- Full-disk datasets derived every 60 minutes
- Processing methods not tailored to TC scales
- AMV height assignment "cap" at 150 hPa
- Time window for comparison: +/- 30 mins
- AMV Quality Indicator ≥ 0.8
- Total of 85 qualifying AMVdropsonde matches, all in upper-level outflow within 500 km of Patricia's center

AMV datasets reprocessed by CIMSS for TCI

- Focused datasets produced every 30 mins using novel processing strategies for TCs
- AMV height assignment upper bound "cap" removed
- Time window for comparison:
 +/- 15 mins
- AMV Quality Indicator ≥ 0.8
- Total of 99 qualifying AMV-Dropsonde matches, all in upper-level outflow within 500 km of Patricia's center

How good are the AMV height assignments? What are the levels of 'Best Fit' based on TCI sondes?

- Search for minima in AMV-Sonde vector difference within 100 hPa of the original AMV height assignment (i.e., what is the best height assignment an AMV could be given that most closely matches a collocated dropsonde wind profile).
 - Negative values: AMVs assigned too high in atmosphere
 - Positive values: AMVs assigned too low in atmosphere

J 13B.4 AMS 33rd Conf. on Hurricanes & Tropical Meteorology

Are AMVs better represented by layers? i.e. layers of 'Best Fit' based on TCI dropsonde wind profiles

- Compare reprocessed AMVs to verticallyaveraged winds derived from varying layers in sonde profile, from 10-300 hPa thick
- Outflow AMVs better represent thin layer of motion rather than a discrete level
 - Clouds being tracked are 3D and represent a volume
 - Lowest VRMS errors for ~70 hPa thick layer

(9.2 m/s)

J 13B.4 AMS 33rd Conf. on Hurricanes & Tropical Meteorology

Storm-centered Differences

 Plan view of reprocessed AMV height and speed differences vs TCI dropsondes (70 hPa layer)

SHAPE: sign of speed difference SIZE: magnitude of speed difference

Storm-centered Differences

 Vertical x-sec view of reprocessed AMV height and speed differences vs TCI dropsondes (70 hPa layer)

SHAPE: sign of speed difference SIZE: magnitude of speed difference

13B.4 AMS 33rd Conf. on Hurricanes & Tropical Meteorology

Summary

- TCI's HDSS high-density, high-altitude dropsondes provided unprecedented coverage over inner core and outflow layers of intense TCs
 - Allows for interrogation of upper-level AMVs with strict spatial and temporal sonde wind matching criteria
- Routine 150 hPa AMV height assignment "cap" inadequate for TC processing
- Reprocessed AMVs are an improvement
 - Error statistics from TC outflow layer are expectedly higher than in general large-scale environments (tight gradients in speed/direction and vertical shear)
- AMVs best represent motion/wind in a thin layer of the troposphere, rather than a discrete height

Layer thickness depends on cloud type and altitude

• bmcnoldy@miami.edu

TCI Website & Data:

- https://www.eol.ucar.edu/field_projects/tci
- Funding for this research is from the Office of Naval Research (Ron Ferek)

13B.4 AMS 33rd Conf. on Hurricanes & Tropical Meteorology